
Towards Reliable and Accurate Energy Predictive
Modelling using Performance Events on Modern

Computing Platforms

Arsalan Shahid

UCD student number: 16203221

The thesis is submitted to University College Dublin
in fulfilment of the requirements for the degree of

Doctor of Philosophy in Computer Science

School of Computer Science

Head of School: Assoc. Professor Chris Bleakley

Research Supervisor: Assoc. Prof. Alexey Lastovetsky

May 2020

i

Acknowledgements

First and foremost, I would like to thank Almighty Allah for giving me the op-

portunity, determination and strength to do my research. His continuous grace

and mercy enabled me to be as yielding, useful and benevolent to His uni-

verse as possible. I would like to express my special thanks to my supervisor

Prof. Alexey Lastovetsky for acceptance in the Heterogeneous Computing

Laboratory (HCL). His support, guidance and overall insights in the field of

high-performance heterogeneous computing have made this an inspiring ex-

perience for me.

I would like to extend my gratitude to Dr Ravi Reddy Manumachu for his

guidance, support, and encouragement throughout my Ph.D. I would also like

to pay a special respect to Muhammad Fahad for appreciation, support, and

collaboration. Finally, from the bottom of my heart I would like to say big thank

you to all my colleagues in UCD’s HCL for their fruitful collaborations: Emin

Nuriyev, Semen Khokhriakov, Hamidreza Khaleghzadeh and Tania Malik.

The last four years of my life have been truly rewarding for becoming a

member of the highly prestigious University College Dublin. I would like to

extend my respect and regards to Prof. Chris Bleakley, the head of school

of computer science, for his trust, wise guidance, and support for providing

me the appointment as a lecturer for computer systems module in the school.

I also thank Prof. Barry Smyth and all the professors from the school who

provided me the opportunities to demonstrate the world-class and structured

modules. From the UCD School of Computer Science, thank you to both Prof

Chris Bleakley and Prof Michela Bertolotto, my DSP members. I specially

thank the examiners of my Ph.D. thesis, Prof. Francisco Carmelo Almeida

Rodriguez and Prof. Mel Ó Cinnéide, and the Chair of Examination Committee

Prof. Tahar Kechadi for their insightful feedback for polishing this thesis. Thank

you also to the school’s support staff: Paul Martin, Anthony O’Gara, Lorraine

ii

McHugh, and D’Arcey Jackson, for their consistent helpfulness over the years.

This research has emanated from research conducted with the financial

support of Science Foundation Ireland (SFI) under Grant Number 14/IA/2474.

I would like to thank SFI and University College Dublin for their financial sup-

port in the form of scholarship awards. I am also grateful to the financial sup-

port of COST Action IC0805 “Open European Network for High-Performance

Computing on Complex Environment” for the insightful summer schools and

workshops held in University of Calabria (Italy), University College Dublin (Ire-

land) and Rud̄er Bošković Institute (Croatia). I would also like to thank the

organizing team of the International HPC summer school held in TU Ostrava

(Czech Republic) for accepting and supporting my participation.

I am grateful to Huawei Technologies Ireland Research Center (IRC) for

providing me a research opportunity to contribute towards the state-of-the-

art innovations in cloud-computing domains such as resource mapping and

optimization and anomaly detection based on innovative machine learning al-

gorithms. I am thankful to my manager Owen O’Brien, for his insightful com-

ments on my work and his guidance to keep me inline with the organization

objectives. I further thank my team at Huawei IRC for their collaborations:

NiZhenWei Ni, Jaroslaw Diuwe, Rogerio Robetti, and Lorenzo Cipriani.

I would like to thank the many amazing friends I met in Ireland who made

this journey full of pleasures.

A heartfelt thanks to my parents and my brother Ahtsham for their love and

support throughout my life. Thank you both for giving me strength to reach for

the stars and chase my dreams.

iii

To my family.

iv

Abstract

Information and Communication Technologies (Information and Communica-

tion Technologies (ICT)) systems and devices are forecast to consume up to

50% of global electricity in 2030. Considering the unsustainable future pre-

dicted, energy efficiency in ICT is becoming a grand technological challenge

and is now a first-class design constraint in all computing settings. Energy

efficiency in ICT can be achieved at the hardware level (or system-level) and

software level (or application-level). While the mainstream approach is to min-

imize the energy of the operating environment and is extensively researched,

application-level energy optimization is comparatively understudied and forms

the focus of this work.

The fundamental building block for energy minimization at the application

level is an accurate measurement of energy consumption during application

execution. There are three popular approaches to providing it: (a) System-

level physical measurements using external power meters, (b) Measurements

using on-chip power sensors, and (c) Energy predictive models. While the

first approach is considered to be the ground truth, it is cost-prohibitive for the

energy optimization of applications. The second approach using energy mea-

surements by state-of-the-art on-chip sensors is not recommended for energy

optimization of applications due to several issues related to the lack of ac-

curate information in the vendor manuals and poorly reported experimental

v

accuracy. The third approach of energy predictive modelling based on per-

formance monitoring counters (PMCs) as model variables is now the leading

method for prediction of energy consumption during application execution. In

this thesis, we focus on application-level energy measurement, modelling, and

optimization using PMCs and high-level application metrics.

A vast majority of research works propose models where the employed

model variables (or PMCs) are selected solely on the basis of their high pos-

itive correlation with energy consumption and report prediction accuracies

ranging from poor to excellent. There are a few pieces of research that crit-

ically examine the inaccuracy of PMC-based models. We present a study to

identify the causes of inaccuracies. We introduce additivity as a property of

PMCs that appears to have a significant impact on the accuracy of energy

predictive models. It is based on an experimental observation that energy

consumption of serial execution of two applications is equal to the sum of the

energy consumption of those applications when they are run separately. Our

initial study shows that a vast majority of PMCs on modern multicore CPUs are

non-additive. We demonstrate how the accuracy of energy predictive models

based on linear regression can be improved by selecting PMCs based on a

property of additivity.

We formulate a sound theoretical framework to understand the fundamen-

tal significance of the model variables with respect to the energy consumption

and the causes of inaccuracy or the reported wide variance of the accuracy

of the models. We use a model-theoretic approach to formulate the assumed

properties of existing energy predictive models in a mathematical form. We

extend the formalism by adding properties, heretofore unconsidered, that ac-

count for a limited form of energy conservation law. The extended formalism

defines our theory of energy predictive models for computing. By applying the

vi

basic practical implications of the theory, we improve the prediction accuracy

of state-of-the-art linear regression models from 31.2% to 18.01%.

We show that high positive correlation of the model variables with dynamic

energy consumption alone is not sufficient to provide good prediction accu-

racy but the model variables must satisfy the properties of consistency test

that takes into account the physical significance of the model variables origi-

nating from the conservation of energy of computing, the manifestation of the

fundamental physical law of energy conservation. We demonstrate that use

of the state-of-the-art measurement tools for energy optimization may lead to

significant losses of energy (up to 84% for applications used in experiments)

since they do not take into account the properties of the theory of energy pre-

dictive models for computing.

Finally, we present the first comprehensive experimental study to compare

the energy predictive modelling techniques employing PMCs. We show that

the selection of model variables using techniques such as additivity that incor-

porate their physical significance with energy consumption produce performs

better in terms of average prediction accuracies than statistical methods. We

discover that the PMCs that record the activities of CPU cores during the ex-

ecution of the applications must be used used to train the energy predictive

models. This is because they are representative of dynamic energy consump-

tion activities. We further demonstrate that a platform-level and application-

level linear regression-based model employing the additive PMCs, irrespec-

tive of the applications used for training and testing, performs better in terms

of average prediction accuracies.

vii

Contents

Acknowledgements ii

Abstract v

Contents viii

List of Figures xv

List of Tables xviii

1 Introduction 1

1.1 High-Performance Computing Platforms & Challenges 2

1.1.1 Evolution of Performance Modelling for HPC Platforms:

A Bird’s-Eye View . 3

1.2 Motivation of This Research 5

1.2.1 Energy : A Recent & Big Challenging Area 5

1.2.2 Challenges in State-of-the-art Energy Efficiency Ap-

proaches in Computing 8

1.2.3 System Level Physical Power Measurements 10

1.2.4 On-chip Sensor Based Power Measurements 11

1.2.5 Energy Predictive Modelling 12

viii

1.2.6 Summary of Challenges in Energy Measurement Ap-

proaches . 16

1.3 Contributions of This Research 17

1.4 Thesis Structure . 18

2 Background and Related Work 20

2.1 Evolution of Multicore CPU Platforms 20

2.2 Terminology for Power and Energy in Computing 22

2.3 Methods for Energy Consumption Measurement in Computing . 24

2.3.1 Power model in CMOS circuits 24

2.3.2 Energy and Power Modelling Using Simulators 25

2.3.3 System-level measurements using physical power meters 27

2.3.4 On-chip power sensors 28

2.3.5 Notable Energy Predictive Models on Modern Comput-

ing Platforms . 31

2.4 Energy Consumption Optimization Approaches in Computing . 44

2.4.1 System-level and Component-level Optimization 45

2.4.2 Application-level Optimization 45

2.5 Summary . 47

3 A Comprehensive Study on the Accuracy of State-of-the-art En-

ergy Predictive Models on Multicore CPUs 50

3.1 Experimental Setup . 51

3.1.1 Experimental platforms 51

3.1.2 System-Level Physical Measurements Using Power Me-

ters . 51

3.1.3 Methodology to Obtain PMCs on HCLServers 53

3.2 Accuracy of Linear Energy Predictive Models and Limitations . 56

ix

3.2.1 Class A: Accuracy of Platform-Level Linear PMC-Based

Models . 57

3.2.2 Class B: Accuracy of Application-Specific PMC-Based

Models . 59

3.3 Summary . 63

4 Energy Predictive Models for Computing: Theory, Practical Impli-

cations, and Experimental Analysis on Multicore CPUs 65

4.1 Energy Predictive Models for Computing: Intuition, Motivation,

and Theory . 69

4.1.1 Intuition and Motivation 69

4.1.2 Formal Summary of Properties of Extended Model . . . 71

4.1.3 Strong Composability: Definition 72

4.1.4 Mathematical Analysis of Linear Energy Predictive Mod-

els Based on The theory of Energy Predictive Models for

computing . 72

4.1.5 Discussion . 77

4.2 Organization of Experimental Results 78

4.3 Group 1: Study of Additivity of PMCs 79

4.3.1 Additivity: Definition . 79

4.3.2 Additivity Test . 80

4.3.3 Experimental Methodology to Obtain Likwid and PAPI

PMCs . 81

4.3.4 Steps to Ensure Reliable Experiments 82

4.3.5 Class A: A Preliminary Study on the Additivity of PMCs

Using Two Popular Tools 84

4.3.6 Class B: Extended Study to Rank PMCs Using Additivity

Test . 88

x

4.3.7 Evolution of Additivity of PMCs from Single-core to Mul-

ticore Architectures . 89

4.3.8 Discussion . 90

4.4 Group 2: Improving Prediction Accuracy of Platform-Level En-

ergy Predictive Models Using Consistency Test 92

4.4.1 Experiments and Analysis 93

4.4.2 Discussion . 99

4.5 Group 3: Impact of Consistency Test on the Accuracy of

Application-Specific Energy Predictive Models 99

4.5.1 Impact of Additivity of PMCs and Correlation with Energy

on the Accuracy of Energy Predictive Models 103

4.5.2 Study to Explore Accuracy Limits for PMC-based

Application-Specific Models 103

4.5.3 Discussion . 106

4.6 Group 4: Study of Dynamic Energy Optimization using Intel

RAPL and System-level Physical Measurements 107

4.7 Summary . 110

5 A Comparative Study of Techniques for Energy Predictive Mod-

elling using Performance Monitoring Counters on Modern Multi-

core CPUs 114

5.1 Terminology Related to Energy, Prediction Error Measures, and

Statistical Techniques . 117

5.1.1 Energy Consumption 117

5.1.2 Prediction Error Measures 118

5.1.3 Model Variable Selection Techniques 118

5.2 Theory of Energy Predictive Models for Computing: Practical

Implications . 119

xi

5.2.1 Additivity of PMCs . 121

5.3 Experimental Setup . 122

5.3.1 Evaluation Platform . 122

5.3.2 Experimental Applications 122

5.3.3 Experimental Tools . 122

5.3.4 Energy Predictive Modelling Techniques 124

5.3.5 Selection Methods for PMCs 127

5.4 Experimental Results . 127

5.5 Summary . 146

6 Conclusion 148

Bibliography 153

Appendices 172

A Methodology for Reliable Energy Measurements 172

A.1 Rationale Behind Using Dynamic Energy Consumption Instead

of Total Energy Consumption 172

A.2 Application Programming Interface (API) for Measurements Us-

ing External Power Meter Interfaces (HCLWattsUp) 173

A.3 Methodology to Obtain a Reliable Data Point 176

A.3.1 Methodology to Determine the Component-Level Energy

Consumption Using HCLWattsUp 178

A.3.2 Methodology to Obtain Dynamic Energy Consumption

Using Intel RAPL . 181

A.4 DE-METER: Calculate Dynamic Energy Consumption Using

RAPL Meter . 183

A.4.1 How to Use DE-METER 184

xii

B Methodology for Collection of PMCs 185

B.1 List of PMC groups Provided by Likwid 185

B.2 Brief overview of SLOPE-PMC and AdditivityChecker 185

C Methodology to Obtain Likwid and PAPI PMCs 191

C.1 LIKWID Performance Monitoring Counter (PMC)s 191

C.2 PAPI PMCs . 192

D Calibration of WattsUp Pro power-meters 194

E Employment of PMCs Selected Using Consistency Test in RF and

NN 200

E.0.1 Platform-level Models 200

E.0.2 Application-level Models 200

F Employing High-Level Metrics as Model Variables in Energy Pre-

dictive Models: A Preliminary Study 203

F.1 Selection Procedure for Model Variables 205

F.1.1 Experimental Setup . 205

F.1.2 Selection of Performance Monitoring Counters (PMCs) . 207

F.1.3 Selection of High-Level Metrics (HLMs) 208

F.2 Experiments and Analysis . 210

F.2.1 Group 1: Accuracy of Application-Specific Energy

Predictive Models Using Pure Utilization Parameters,

PMCs, and HLMs . 211

F.2.2 Group 2: Improving the Accuracy of Platform-Level En-

ergy Predictive Models 219

F.2.3 Group 3: Energy Predictive Models for Workload Parallel

Applications on a Dual Socket Multicore CPU Platform . 224

xiii

F.3 Summary . 229

G Study of Dynamic Energy Predictive Modelling for Data-Parallel

Applications on Dual-socket Multicore CPU platform 231

G.0.1 Discussion . 233

H Experimental Observations Demotivating the Use of Intel RAPL for

Energy Optimization 235

Acronyms 237

xiv

List of Figures

1.1 Evolution of HPC Platforms for Performance. 3

1.2 Energy consumption distributions for ICT sectors. Adapted from

[1]. 7

1.3 a). Number of research publications on computing energy and

PMCs. b). Research publications in other areas of energy in

computing. These statistics have been collected from Google

Scholar and Microsoft Academic. 13

2.1 A typical processor architecture of a modern multicore CPU . . 21

3.1 Dynamic energy consumption of Predictive Models, Intel RAPL

and HCLWattsUp on HCLServer2. 61

3.2 Percentage deviations of predictive models and RAPL from

HCLWattsUp. The dotted lines represent the averages. 62

4.1 Increase in number of non-additive PMCs with threads/cores

used in an application. (A), (B), and (C) shows non-additive

PMCs for Intel MKL DGEMM, Intel MKL FFT and naive matrix-

vector multiplication. 90

xv

4.2 Percentage deviations of the type 3 models shown in Table 4.8

from the system-level physical power measurements provided

by power meters (HCLWattsUp). The dotted lines represent the

averages. 98

4.3 Percentage deviations of the application-specific models shown

in Table 4.10, 4.11 and 4.12 from the system-level physical

power measurements provided by power meters (HCLWattsUp)

for (a). DGEMM and (b). FFT. 105

4.4 Dynamic energy consumption of Intel MKL DGEMM applica-

tion multiplying two matrices of sizes: M × N and N × N on

HCLServer1, andK×N andN×N on HCLServer2. M+K = N .109

5.1 Experimental workflow to determine the PMCs for our

HCLServer platforms. 123

5.2 Machine Learning Model Building and Evaluation Pipelines for

LR, RF and NN . 126

5.3 PMC selection process using Statistical Methods. 128

5.4 Real and predicted dynamic energy consumptions using

HCLWattsUp and linear regression models versus (a). PMC

PL1 for train set applications, (b). PMC PL1 for test set appli-

cations, (c). PMCs, PL1 and PL2, for train set applications, and

(d). PMCs, PL2 and PL2, for test set applications. 130

5.5 Comparison of (a). average relative prediction accuracies, and

(b). average proportional prediction accuracies, for LR5, RF,

and NN. 137

A.1 Example illustrating the use of HCLWattsUp API for measuring

the dynamic energy consumption 175

xvi

B.1 likwid-perfctr options and usage 186

B.2 List of PMC groups provided by Likwid tool on HCLServer2 . . 187

B.3 List of PMC groups provided by Likwid tool on HCLServer2 . . 188

B.4 SLOPE-PMC: Towards the automation of PMC collection on

Modern Computing Platforms 189

B.5 AdditivityChecker : Test PMCs for Additivity 190

D.1 Calibration test for idle power using WattsUp Pro and Yokogawa

PowerMeter on (a) HCLServer1 and (b) HCLServer2 197

D.2 Comparison of total power for Intel MKL DGEMM using WattsUp

Pro and Yokogawa PowerMeter on (a) HCLServer1 and (b)

HCLServer2 . 198

D.3 Comparison of total power for Intel MKL FFT using WattsUp

Pro and Yokogawa PowerMeter on (a) HCLServer1 and (b)

HCLServer2 . 199

H.1 Dynamic energy consumption of RAPL and HCLWattsUp on

HCLServer1. 236

xvii

List of Tables

3.1 Specification of the Intel Haswell (HCLServer1) and Intel Sky-

lake (HCLServer2) multicore CPU Server 52

3.2 List of Applications . 55

3.3 Correlation of performance monitoring computers (PMCs) with

dynamic energy consumption (ED). Correlation matrix showing

relationship of dynamic energy with PMCs. 100% correlation is

denoted by 1. 57

3.4 Linear predictive models (A-F) with intercepts and RAPL with

their minimum, average and maximum prediction errors. 58

3.5 Selected PMCs for Class B experiments along with their en-

ergy correlation for Double-precision General Matrix Multiplica-

tion (DGEMM) and Fast Fourier Transform (FFT). 0 to 1 repre-

sents positive correlation of 0% to 100%. 60

4.1 List of potentially additive Likwid PMCs 85

4.2 List of non-additive Likwid PMCs 86

4.3 List of potentially additive PAPI PMCs 87

4.4 List of non-additive PAPI PMCs 88

xviii

4.5 Correlation of PMCs with dynamic energy consumption (ED).

(A) List of selected PMCs for modelling with their additivity test

errors (%). (B) Correlation matrix showing positive correlations

of dynamic energy with PMCs. 100% correlation is denoted by

1. X4, X5, and X6 are highly correlated with ED. 93

4.6 Linear predictive models (MA1-MG1) with intercepts and their

minimum, average, and maximum prediction errors. Coeffi-

cients can be positive or negative. 93

4.7 Linear predictive models (MA2-MG2) with zero intercepts and

their minimum, average, and maximum prediction errors. Coef-

ficients can be positive or negative. 94

4.8 Linear predictive models (MA3-MG3) with zero intercepts. Co-

efficients cannot be negative. The minimum, average, and max-

imum prediction errors of IntelRAPL and the linear predictive

models. 94

4.9 Selected additive and non-additive PMCs and their correlation

with dynamic energy consumption. 0 to 1 represents positive

correlation of 0% to 100%. 101

4.10 Prediction accuracies of application-specific models. (a) Energy

predictive models using nine PMCs. (b) Energy predictive mod-

els using four high positively-correlated PMCs. 102

4.11 Accuracy of application-specific energy predictive models for

DGEMM employing 5, 6, 7, 8 most positively energy correlated

and highly additive PMCs . 104

4.12 Accuracy of application-specific energy predictive models for

FFT employing 5, 6, 7, and 8 PMCs that are most positively

correlated with energy and highly additive. 106

xix

5.1 Modelling Parameters . 124

5.2 List of selected PMCs and their additivity test errors (%). 129

5.3 Linear regression models with their minimum, average, and

maximum prediction errors. 130

5.4 Prediction accuracies for linear regression models for configu-

ration A2. 131

5.5 List of PMCs selected in stage 1 of approach B where the PMCs

are listed in the increasing order of positive correlation with dy-

namic energy consumption. 135

5.6 List of prime PMCs obtained after applying principal component

analysis. 135

5.7 Prediction accuracies for random forest models. 135

5.8 Prediction accuracies for neural network models. 136

5.9 Additive and non-additive PMCs highly correlated with dynamic

energy consumption. 0 to 1 represents positive correlation of

0% to 100%. 140

5.10 Prediction accuracies of LR models using nine PMCs. 140

5.11 Prediction accuracies of LR models using four PMCs. 140

5.12 List of PMCs obtained for application-specific modelling using

correlation. 141

5.13 Prediction accuracies of application-specific RF and NN models. 141

D.1 Minimum, maximum and average of idle power using WattsUp

Pro and Yokogawa PowerMeter on HCLServer1 and HCLServer2196

D.2 Comparison of minimum, average, and maximum measurement

errors for DGEMM and FFT on HCLServer1 and HCLServer2

using WattsUp Pro and Yokogawa 197

xx

E.1 Random forest (RF) regression-based energy predictive models

(RF1-RF6) with their minimum, average, and maximum predic-

tion errors. 201

E.2 Neural Networks based energy predictive models (NN1-NN6)

with their minimum, average, and maximum prediction errors. . 201

E.3 Prediction accuracies of LR models using nine PMCs. 202

E.4 Prediction accuracies of LR, RF, and NN models using four PMCs.202

F.1 Selected additive PMCs and their correlations with dynamic en-

ergy consumption on, (a). HCLServer1 and (b). HCLServer2. 0

to 1 represents correlation factors of 0% to 100%, respectively. 213

F.2 Data-set for application specific models on HCLServer1 and

HCLServer2 . 214

F.3 Prediction Accuracies for Application-Specific Models in Cate-

gory A . 216

F.4 Prediction Accuracies for Application-Specific Models in Cate-

gory B . 217

F.5 Prediction Accuracies for Application-Specific Models in Cate-

gory C . 217

F.6 Prediction Accuracies for Application-Specific Models in Cate-

gory D . 218

F.7 Prediction Accuracies for Energy Predictive Models in set A and

set B. 221

F.8 Prediction accuracies for platform level energy predictive models. 223

F.9 Prediction accuracies for platform-wide and socket-wide PMC-

Based models for data-parallel applications 227

F.10 Prediction accuracies for platform-level and socket-wide HLM-

Based models for data-parallel applications 228

xxi

G.1 Prediction accuracies for platform-level and socket-level models

for data-parallel applications. 234

xxii

Statement of Original Authorship

I hereby certify that the submitted work is my own work, was completed while

registered as a candidate for the degree stated on the Title Page, and I have

not obtained a degree elsewhere on the basis of the research presented in

this submitted work.

xxiii

Chapter 1

Introduction

Since the emergence of data-driven products aiming towards a fully automated

and intelligent connected world, the high-quality computing resource is consid-

ered as a top-notch strategic component for innovations and economic boosts.

The high-performance computing (HPC) platforms, dedicated data centers,

and cloud-based servers provide the computational power to the industry and

small and medium enterprises to realize the objectives of a smart future for

mankind with improved living standards.

For decades, achieving performance gains from computing resources is

the major concern of both the hardware architects and the application develop-

ers. The implications of Moore’s law [2] translate in the doubling of the number

of transistors in a dense integrated circuit every 18 to 24 months. According

to Dennard scaling [3], a postulation of Moore’s law guides that the power use

of the transistors is directly proportional to their area. Moore’s law and Den-

nard’s scaling have been providing a road-map for researchers for decades

to achieve exponential improvement in the performance of processors by in-

creasing their clock frequencies without any significant additional power con-

sumption. However, around 2006, the break of Dennard’s scaling put to a

permanent stop on getting further benefits and improving performance. As a

result, the processor manufacturers evolved the architectures from single-core

to multi-core and many-core platforms. However, the end of Moore’s law has

practical implications to stop this type of performance scaling.

1

1.1. HIGH-PERFORMANCE COMPUTING PLATFORMS & CHALLENGES

The rest of this chapter is divided into four main sections. In Section 1.1,

we present the evolution of computing platforms for performance and briefly

summarize the recent research and development in the area of performance

modelling and optimization for the latest high-performance computing plat-

forms. Section 1.2 presents the motivation of research and highlight energy

consumption as a leading concern for HPC platforms. We also present the

main energy measurement approaches of computing and discuss how energy

predictive models evolved as the dominant method for energy measurement

during the execution of applications. We conclude this section with a summary

of the main challenges of energy measurement methods. In Section 1.3, we

list the main contributions of this research, and finally Section 1.4 details the

structure of the thesis.

1.1 High-Performance Computing Platforms &

Challenges

Since the origin, HPC community has always been concerned with the objec-

tive of increasing the platform performance for executing an application or set

of applications. Figure 1.1 shows the top supercomputing platforms and their

increased performance (in petaflops) over a period of time. It can be seen

that U.S. summit is the fastest supercomputing platform after 2018. However,

the next most ambitious objective for an HPC platform is to achieve an exas-

cale performance. China plans to release first exascale machine by the end of

year 2020. It should be noted that latest HPC platforms have become highly

heterogeneous owing to tight integration of multicore CPUs and accelerators

(such as GPUs, Intel Xeon Phi (Xeon Phi)s, or Field Programmable Gate Ar-

ray (FPGA)s) to maximize the dominant objectives of performance and energy

efficiency.

Modern computing platforms are evolving with increased complexities such

as high resource contention and non-uniform memory access (NUMA). The

tight integration of tens of cores organized in multiple sockets with multi-level

cache hierarchy and contending for shared on-chip resources such as last

2

1.1. HIGH-PERFORMANCE COMPUTING PLATFORMS & CHALLENGES

Figure 1.1: Evolution of HPC Platforms for Performance.

level cache and DRAM controllers causes severe resource contention. The

NUMA is because the time for memory access between a core and main mem-

ory is not uniform as the main memory is distributed between locality domains

or groups called NUMA nodes.

1.1.1 Evolution of Performance Modelling for HPC Plat-

forms: A Bird’s-Eye View

For over three decades before the mid-2000s, computing users came to ex-

pect processor performance doubling every 18 months because of Moore’s

law and Dennard scaling. Both clock rate and power increased rapidly. From

the HPC point of view, this was the era of homogeneous and heterogeneous

clusters of single-core processors. However, by late 2003, system design-

ers hit the power wall caused by issues because of ever-increasing power

consumption and power density (that is, the amount of power dissipated per

unit area, which represents the heat dissipation). The power problem was

caused mainly by the breakdown of Dennard scaling. It is a scaling model

that suggests the power density of a transistor-based processor of a unit area

remains constant due to voltage and current scaling down with the length of

the transistor. Up until 2004, efforts towards reducing the size of the tran-

3

1.1. HIGH-PERFORMANCE COMPUTING PLATFORMS & CHALLENGES

sistor meant that frequency could be increased for no significant increase in

heat dissipation. In other words, the breakdown of Dennard scaling implies

that frequency scaling was no longer an economical option. Therefore, the

chip fabrication industry turned to multicore CPU architectures to address this

problem of increased power consumption and power density. Frequency scal-

ing was abandoned in favor of multiple processors per chip. In addition to

this, around 2001, the use of GPUs for general-purpose computing became

practical due to the appearance of programmable shaders and floating-point

operations support. Therefore, the performance efficiency of the HPC system

has been researched widely by the community. In order to be able to optimize

the performance of a computing platform, the modelling is a bigger objective.

There are system-level and application-level performance optimization meth-

ods that take as input these models.

We briefly study the evolution of performance models and researches that

have attempted to realistically capture the real-life behavior of applications ex-

ecuting on these platforms for performance maximization.

The simplest performance models used positive constant numbers and

various terms such as normalized processor speed, normalized cycle time,

task computation time, average execution time, etc., to characterize the speed

of an application [4], [5], [6]. The common aspect of these models is that the

performance of a processor is assumed to have no dependence on the size of

the workload. We call them constant performance models (CPMs).

The most advanced load balancing algorithms use functional performance

models (FPMs), that are application-specific. The FPMs represent the speed

of a processor by a continuous function of problem size but satisfies some as-

sumptions on its shape [7],[8]. The assumptions require them to be smooth

enough in order to guarantee that optimal solutions minimizing the computa-

tion time always load balanced. The FPMs capture accurately the real-life be-

havior of applications executing on nodes consisting of uniprocessors (single-

core CPUs).

However, modern HPC platforms have complex nodal architectures with

the highly hierarchical arrangement and tight integration of processors where

resource contention and Non-Uniform Memory Access (NUMA) are inherent.

4

1.2. MOTIVATION OF THIS RESEARCH

On such platforms, the performance profiles of real-life scientific applications

are not smooth and deviate significantly from the shapes that allowed tradi-

tional and state-of-the-art load balancing algorithms to find optimal solutions.

Lastovetsky et al. [9] study the drastic deviations in the performance pro-

files for a real-life scientific application. The authors propose an optimization

technique reusing an advanced performance model of computation (FPM) but

using novel load distribution to minimize the computation time of the appli-

cation. Ravi et al. [10] illustrate in-depth these variations in performance

and energy profiles of two widely known and highly optimized scientific rou-

tines, OpenBLAS DGEMM [11] and FFTW [12] on a modern multicore Intel

Haswell CPU platform. They explain the limitations of the FPM-based load

balancing algorithms proposed in [13], [14], [15], [16], [17], [18], [19], [20],

[21]. They propose novel model-based methods and algorithms for minimiza-

tion of time and energy of computations for the most general performance and

energy profiles of data-parallel applications executing on homogeneous mul-

ticore clusters. Unlike load balancing algorithms, optimal solutions found by

these algorithms may not load-balance an application. The new model-based

methods proposed in [9], [10], however, can not be used for the optimization of

data-parallel applications on HPC platforms with hybrid nodes for maximiza-

tion of performance since they are designed for homogeneous clusters, i.e.,

cluster of identical processors. There have also been attempts to profile the

performance of a computing system by using high-level parameters such as

DRAM activity, data stream, etc. such as the roofline model [22].

1.2 Motivation of This Research

1.2.1 Energy: A Recent & Big Challenging Area

The energy consumption of Information and Communication Technologies

(ICT) systems and devices is reported to be about 5300 terawatt-hours (TWh)

in the year 2019. It accounts for 20% of the global electricity demand [23].

An alarming picture is the rapidly increasing trend of the energy usage of ICT

and its share of global usage (Figure 1.2(a)). If the trend continues, ICT will

5

1.2. MOTIVATION OF THIS RESEARCH

consume up to 50% of global electricity in 2030 with a contribution to green-

house gas emissions of 23% [1]. Figure 1.2(b) shows the breakdown of the

main energy consumption sectors in ICT. It can be seen that by 2030 the major

contributors to ICT energy would be operational data centers and the network

operations in the form of autonomous driving networks (ADN). Figure 1.2(c)

clearly forecasts the rise and fall in the ICT sectors towards energy consump-

tions. To summarize, the forecast for ICT energy consumption portends an

unsustainable future. Therefore, energy efficiency in ICT is becoming a grand

technological challenge and is now a first-class design constraint in all com-

puting settings [24, 25].

Increased performance of HPC systems comes at the cost of energy con-

sumption and with such a tremendous boost in the performance of these mod-

ern systems, tons of watts of power is being consumed by HPC and supercom-

puting centers. Tianhe-2, the 33.9-petaflop, 3.12-million processor machine by

China supercomputing center consumes around 17.8 MW of power and it is

equivalent to powering 13501 households, approximately. Intelligently control-

ling energy consumption is a significant aspect in massive High Performance

Computing (HPC) units as modern data-centers can eat-up as much of elec-

tricity as a city. According to a DOE Office of Science report [25], excessive

energy consumption in HPC system design is now a principal and mainstream

challenge in the scientific community. While microprocessor architects and

engineers have always been producing energy-efficient computing hardware,

it is now a validated fact that the energy consumption of a platform during

the execution of the application is significant. Consider, for example, a modern

heterogeneous and multicore server (having a CPU, Graphics Processing Unit

(GPU), and a Xeon Phi) in its idle mode consuming approximately 200 watts

when running with an application using all of its resources can consume up

to 1.2 KiloWatts. Furthermore, in today’s data-center facility, there are tons

and thousands of such servers in operation. This gives the application devel-

opers and optimization experts an opportunity to put efforts in optimizing the

execution of applications in terms of their energy consumption.

6

1.2. MOTIVATION OF THIS RESEARCH

(a) Contribution of the ICT towards the global energy con-
sumption.

(b) Breakdown of energy utilization with in ICT sec-
tors

(c) Energy consumption forecast for ICT sectors

Figure 1.2: Energy consumption distributions for ICT sectors. Adapted from
[1].

7

1.2. MOTIVATION OF THIS RESEARCH

1.2.2 Challenges in State-of-the-art Energy Efficiency Ap-

proaches in Computing

Following are two main approaches to enhance energy efficiency in comput-

ing:

1. Hardware approach

2. Software approach

The first approach deals with producing energy-efficient hardware devices

at a transistor (or gate) level to boost the efficiency of power electronic devices.

The goal is to make these components use as little energy as possible to avoid

unnecessarily generated heat and avoid the use of complex cooling systems.

The second approach deals with developing energy-efficient software.

Based on the scope and coverage, it can be further subdivided into the fol-

lowing two approaches:

1. System level

2. Application level

The system-level optimization approaches are largely driven by hardware

innovations in manufacturing energy-efficient devices. The techniques include

clock and power gating, dynamic voltage and frequency scaling (Dynamic Volt-

age and Frequency Scaling (DVFS)), and dynamic power management (DPM).

A component executing an application has two types of power consumption:

(a). static power and (b). dynamic power. Static or idle power is the power

consumed when the component is not running an application. However, the

switching activity in the component’s circuits is responsible for dynamic power

consumption. Clock gating and power gating are the two main stream tech-

niques that reduce the power consumption of the CMOS circuits. Clock gating

technique is used in many synchronous circuits for reducing dynamic power

dissipation, by removing the clock signal once the circuit is idle. However,

power gating technique is used in integrated circuit designs design to reduce

8

1.2. MOTIVATION OF THIS RESEARCH

idle power consumption by turning off the current flowing in the blocks of the

idle circuit. Clock gating saves the dynamic power consumption of the compo-

nents by disabling portions of the circuitry to restrict the flip-flops in them for

switching between states. On the other hand, power gating reduces the static

power dissipation by turning off portions of inactive circuitry. DPM enables the

computing components to move to a low power state when they are not exe-

cuting the applications. Another approach to reduce the power consumption

at a system or platform-level is dynamic frequency and voltage scaling (DVFS)

that takes advantage of the modern processors that allow programmers to set

different clock frequencies and reduces dynamic power consumption.

The application-levels solution methods include optimization of applica-

tions by using application-level decision variables and predictive models for

performance and energy consumption of applications. The main decision vari-

ables are the number of threads executing the application and the workload

distribution among the computing components such as CPU cores, memory

banks, etc employed by an application during the execution. The other de-

cision variables can be operating frequency, number of threads, number of

processes, etc. This approach is comparatively understudied but recent break-

throughs in application-level optimization methods such as [10, 26, 27, 28, 29],

pave the way to excel research and development in this domain. These ap-

proaches address the following three main challenges posed by inherent com-

plexities in modern multicore CPUs:

• Severe resource contention due to tight integration of tens of cores orga-

nized in multiple sockets with multi-level cache hierarchy and contending

for shared on-chip resources such as last level cache (Last Level Cache

(LLC)), interconnect (For example Intel’s Quick Path Interconnect, AMD’s

Hyper Transport), and DRAM controllers.

• Non-uniform memory access (NUMA) where the time for memory ac-

cess between a core and main memory is not uniform and where main

memory is distributed between locality domains or groups called NUMA

nodes.

9

1.2. MOTIVATION OF THIS RESEARCH

• Dynamic power management (DPM) of multiple power domains (CPU

sockets, DRAM).

In this thesis, we will focus exclusively on the application-level approach.

Accurate measurement of energy consumption during an application execution

is key to energy minimization at the application level. There are three popular

approaches to providing it are as follows:

1. System-level physical power measurements using external power me-

ters.

2. Measurements using on-chip power sensors.

3. Energy predictive models.

1.2.3 System Level Physical Power Measurements

Using the system-level physical power measurements provided by external

power meters in the first approach, the dynamic energy consumption during

an application execution is determined by applying the following formula (5.1).

ED = ET − (PS × TE) (1.1)

The total energy consumption ET is the area under the discrete function

of the power samples provided by the power meter versus the time intervals

between the samples. Well-known numerical approaches such as trapezoidal

rule can be used to calculate this area approximately. The trapezoidal rule

works by approximating the area under a function using trapezoids rather than

rectangles to get better approximations. The execution time TE of the applica-

tion execution can be determined accurately using the processor clocks. The

accuracy of obtaining the total energy consumption ET and the static power

consumption PS is equal to the accuracy provided in the specification of the

power meter. Therefore, we consider this approach to be the ground truth.

However, the accuracy of measured energy consumption is effected by the

accuracy limits of the employed power meters. For example, the variance in

the accuracy of power readings for WattsUp Pro power meter is 2.5%.

10

1.2. MOTIVATION OF THIS RESEARCH

However, the first approach provides the physical power measurement at

a computer level only and therefore lacks the ability to furnish fine-grained

decomposition of the energy consumption of an application executing on sev-

eral independent computing devices on a computer. This component-level

decomposition of energy consumption is significant in order to optimize the

application by distributing the workload. A naïve approach to optimize the

application for dynamic energy consumption will have exponential complexity.

The approach must explore all possible workload distributions. For each work-

load distribution, it determines the total dynamic energy consumption during

the parallel execution of the workload by applying the formula (5.1). It, then,

returns the workload distribution with the minimum total dynamic energy con-

sumption.

1.2.4 On-chip Sensor Based Power Measurements

The second approach is based on on-chip power sensors now available in

mainstream processors such as Intel and AMD Multicore CPUs, Nvidia GPUs,

and Intel Xeon Phis. There are vendor-specific libraries to acquire the power

data from these sensors. For example, Running Average Power Limit (RAPL)

[30] can be used to monitor power and control frequency (and voltage) of Intel

CPUs, and Nvidia Management Library (NVML) [31] and Intel System Man-

agement Controller chip (SMC) [32] provide the power consumption by Nvidia

GPUs and Intel Xeon Phi respectively. The dynamic energy consumption dur-

ing an application executing on a computing device equipped with on-chip sen-

sors is also calculated using the Formula (5.1). The execution time TE of the

application execution can be determined accurately using the timers provided

in the computing device. The base power consumption PS is obtained using

the on-chip sensors when the component is idle. The total energy consump-

tion ET is calculated from the power samples using the trapezoidal rule.

While the accuracy of Nvidia GPU on-chip sensors is reported in the NVML

manual (±5%) [31], the accuracies of the other sensors are not known. For

the GPU and Xeon Phi on-chip sensors, there is no information about how a

power reading is determined that would allow one to determine its accuracy.

11

1.2. MOTIVATION OF THIS RESEARCH

For the CPU on-chip sensors, RAPL uses separate voltage regulators (VR

IMON) for both CPU and DRAM. VR IMON is an analog circuit within voltage

regulator (VR), which keeps track of an estimate of the current [33]. RAPL is

shown to exhibit good prediction accuracy for applications employing decision

variables such as dynamic voltage and frequency scaling (DVFS) [34] and the

number of application-level threads [35] but keeping the workload size fixed.

However, In [36], the authors demonstrate that RAPL shows poor corre-

lation with real measurements if the workload size is varied and all the other

parameters are fixed. They present the first comprehensive comparative study

of the accuracy of state-of-the-art on-chip power sensors against system-level

physical power measurements using external power meters (the ground truth).

They show that energy measurements provided by the state-of-the-art on-chip

sensors significantly deviate from the ground truth. Moreover, owing to the na-

ture of the deviations, calibration can not improve the accuracy of the on-chip

sensors to the extent that they could favor their use in the optimization of ap-

plications for dynamic energy. We define calibration as a constant adjustment

(positive or negative value) made to the data points in a dynamic energy profile

of an application obtained using a measurement approach (on-chip sensors or

energy predictive models) with the aim to reduce its error against the ground

truth.

1.2.5 Energy Predictive Modelling

The third approach based on software energy predictive models emerged as

a popular alternative to determine the energy consumption of an application.

Figures 1.3(a), 1.3(b) illustrate that this approach has been most dominant in

recent years as evidenced by the number of academic publications.

A vast majority of such models are linear and employ performance mon-

itoring counters (PMCs) as predictor variables. Performance events or per-

formance monitoring counters (PMCs) are special-purpose registers provided

in modern microprocessors to store the counts of software and hardware ac-

tivities. We will use the acronym PMCs to refer to software events, which

are pure kernel-level counters such as page-faults, context-switches, etc. as

12

1.2. MOTIVATION OF THIS RESEARCH

(a)

(b)

Figure 1.3: a). Number of research publications on computing energy and
PMCs. b). Research publications in other areas of energy in computing.
These statistics have been collected from Google Scholar and Microsoft Aca-
demic.

13

1.2. MOTIVATION OF THIS RESEARCH

well as micro-architectural events originating from the processor and its per-

formance monitoring unit called the hardware events such as cache-misses,

branch-instructions, etc. They have been developed primarily to aid low-level

performance analysis and tuning. Remarkably while PMCs have not been

used for performance modeling (Section 1.1.1), over the years, they have be-

come dominant predictor variables for energy predictive modeling.

Modern hardware processors provide a large set of PMCs. Consider the

Intel Haswell multicore server CPU. On this server, the PAPI tool [37] pro-

vides 53 hardware performance events. The Likwid tool [38], [39] provides 167

PMCs. This includes events for uncore and micro-operations (µops) of CPU

cores specific to Haswell architecture that are not provided by PAPI. However,

all the PMCs can not be determined using a single application run since only

a limited number of registers are dedicated to collecting them. For example,

to collect all the Likwid PMCs for a single runtime configuration of an applica-

tion on the server, the application must be executed 53 times. It must be also

pointed out that energy predictive models based on PMCs are not portable

across a wide range of architectures. While a model based on either Likwid

PMCs or PAPI PMCs may be portable across Intel and AMD architectures, it

will be unsuitable for GPU architectures.

Therefore, there are three serious constraints that pose difficult challenges

to employing PMCs as predictor variables for energy predictive modeling.

1. There is a large number of PMCs to consider.

2. A lot of programming effort and time are required to automate and collect

all the PMCs. This is because all the PMCs can not be collected in

one single application run. There are a number of PMCs that can not

be collected with each other in the same application run. Therefore,

identifying those PMCs also adds to the time for the collection of PMCs.

3. A model purely based on PMCs lacks portability. This means that a

model build using PMCs of an Intel processor may not be used for ARM

processors because of the non-availability of the same PMCs.

We now focus mainly on techniques employed to select a subset of PMCs

14

1.2. MOTIVATION OF THIS RESEARCH

to be used as predictor variables for energy predictive modeling. We present

a brief survey of them.

O’Brien et al. [40] survey the state-of-the-art energy predictive models

in HPC and present a case study demonstrating the ineffectiveness of the

dominant PMC-based modeling approach for accurate energy predictions. In

the case study, they use 35 carefully selected PMCs (out of a total of 390

available in the platform) in their linear regression model for predicting dynamic

energy consumption. [41], [42], [43] select PMCs manually, based on in-depth

study of architecture and empirical analysis. [44], [45], [46], [47], [48], [49],

[50] select PMCs that are highly correlated with energy consumption using

Spearman’s rank correlation coefficient (or Pearson’s correlation coefficient)

and principal component analysis (Principal Component Analysis (PCA)). [41],

[49], [51] use variants of linear regression to remove PMCs that do not improve

the average model prediction error.

From the survey, we can classify the existing techniques into three cate-

gories.

1. The first category contains techniques that consider all the PMCs with

the goal to capture all possible contributors to energy consumption. To

the best of our knowledge, we found no research works that adopt this

approach.

2. The second category consists of techniques that are based on a statisti-

cal methodology such as a correlation and principal component analysis

for the selection of PMCs.

3. The last category contains techniques that use expert advice or intuition

to pick a subset (that may not necessarily be determined in one applica-

tion run) and that, in experts’ opinion, is a dominant contributor to energy

consumption.

However, the existing techniques have not considered one fundamental

property of predictor variables that should have been considered in the first

place to remove PMCs unfit for modeling energy. We address this oversight in

this thesis in Chapter 4.

15

1.2. MOTIVATION OF THIS RESEARCH

A pervasive approach is to determine the energy consumption of a hard-

ware component based on linear regression of the PMC counts in the com-

ponent during an application run. The total energy consumption is then cal-

culated as the sum of these individual consumptions. While the models allow

determination of fine-grained decomposition of energy consumption during the

execution of an application, there are research works highlighting their poor ac-

curacy [52, 53, 40, 54, 36]. In this thesis, we study the causes of inaccuracies

in state-of-the-art energy models.

1.2.6 Summary of Challenges in Energy Measurement Ap-

proaches

To summarize, using system-level physical power measurements provided by

power meters is an expensive approach.

Energy measurements by state-of-the-art on-chip sensors (RAPL for mul-

ticore CPUs, NVML for GPUs, MPSS for Xeon Phis) are not recommended

for energy optimization of applications. The fundamental issue with this mea-

surement approach is the lack of information about how a power reading for

a component is determined during the execution of an application utilizing the

component. While the accuracy of this information is reported in the case of

NVML, experimental results demonstrate that practical accuracy is worse [36].

Moreover, the dynamic energy profile patterns against application-level deci-

sion variables (such as workload) of the on-chip sensors differ significantly

from the patterns obtained using the ground truth, which suggests that the

measurements using on-chip sensors do not capture the holistic picture of the

dynamic energy consumption during application execution. At the same time,

we observed that the energy measurements reported by the on-chip sensors

are deterministic and reproducible and, therefore can be used as predictor

variables in energy predictive models.

Software energy predictive models emerged as a popular alternative to

determine the energy consumption of an application. A vast majority of the

models employ PMCs as the model variables. While the main advantage of

a software energy predictive model is the determination of fine-grained de-

16

1.3. CONTRIBUTIONS OF THIS RESEARCH

composition of energy consumption during the execution of an application at

less cost compared to the ground truth approach using power meters, this

approach suffers from following serious drawbacks.

• The selection of the best set of PMCs as predictor variables is crucial.

• The complexity of model construction and lack of consensus among the

research works, which report prediction accuracies ranging from poor to

excellent.

• A vast majority of research works select PMCs solely on the basis of

their high positive correlation with energy consumption without any deep

understanding of the physical significance of the model variables. How-

ever, a sound theoretical framework to understand the fundamental sig-

nificance of the model variables with respect to the energy consumption,

and the causes of inaccuracy or the reported wide variance of the accu-

racy of the models is lacking.

In this thesis, we address these major drawbacks.

1.3 Contributions of This Research

To summarize, the main contributions of this thesis are:

1. A comprehensive study of energy measurement approaches for multi-

core CPUs. We show that energy predictive models based on PMCs are

plagued by poor accuracy.

2. A novel theory of energy predictive models for computing and its practi-

cal implications.

3. A novel property for PMCs called additivity, to determine the subset of

PMCs that can potentially be used for reliable energy predictive model-

ing.

17

1.4. THESIS STRUCTURE

4. Experimental studies and methodologies demonstrating the improve-

ments in the accuracy of linear energy predictive models using the theory

of energy predictive models for computing.

5. Techniques to improve the prediction accuracy energy predictive mod-

els for data-parallel applications executing on independently powered

processor components. We show that models employing socket-level

PMCs, which represent the resource utilization of individually powered

components, yield a more accurate energy predictive model.

6. A study demonstrating significant energy losses incurred due to the em-

ployment of inaccurate energy measuring tools in energy optimization

methods.

7. The first comprehensive experimental study to compare the energy pre-

dictive modelling techniques employing PMCs.

1.4 Thesis Structure

The structure of this thesis is as follows. In Chapter 2, we review the evolution

of HPC machines, efforts on performance modelling and optimization for mod-

ern multicore and heterogeneous platforms, and the existing works on energy

measurement, modelling, and optimization methods. We also describe the

shortcomings and challenges of energy predictive modelling approaches. In

Chapter 3, we present a comprehensive study on the state-of-the-art energy

measurement methods including system-level energy measurements, on-chip

sensor readings, and predictive models based on performance monitoring

counters. In Chapter 4, we first present additivity as a selection criterion for

PMCs to be used as model variables in energy predictive models. We present

the results of the preliminary experimental study of the additivity of PMCs on

an Intel Haswell multicore server and show that most of the PMCs are not addi-

tive. We then present a novel theory of energy predictive models for computing

that lay the basis of a sound theoretical framework to understand the funda-

mental significance of model variables with respect to energy consumption.

18

1.4. THESIS STRUCTURE

We incorporate the implications of the theory in the state-of-the-art energy

models and study their prediction accuracy using strict experimental method-

ology on multicore CPU platforms. In Chapter 5, we present a comparative

study of techniques for platform-level and application-level energy predictive

modelling using PMCs. Finally, Chapter 6 concludes the thesis.

19

Chapter 2

Background and Related Work

We now take a brief tour through the beginnings and consequent firm estab-

lishment of performance events as the dominant parameters in energy pre-

dictive models (Section 2.1, 2.2, 2.3). While presenting this brief history, we

also review system-level power measurements (Section 2.3.3), on-chip sen-

sors (Section 2.3.4), notable models that predict energy consumption based

on utilization or activity factors estimated from performance events, and other

energy models using additive approaches (Section 2.3.5). This is followed

by a survey of research works on system-level energy optimization employ-

ing hardware parameters as decision variables and application-level energy

optimization using application-level parameters (Section 2.4).

2.1 Evolution of Multicore CPU Platforms

Prior to the emergence of multicore processors and during the era of uni-

core processors, the computing system users came to expect a doubling in

performance every 18 months because of Moore’s law and Dennard scaling.

However, the goal to achieve a higher performance of applications on multi-

core CPUs is left as trivial. Some complex issues that surround the migration

forward to multicore architecture which affect the performance are as follows:

1. Severe resource contention due to tight integration of tens of cores orga-

nized in multiple sockets with multi-level cache hierarchy and contending

20

2.1. EVOLUTION OF MULTICORE CPU PLATFORMS

for shared on-chip resources such as:

• last level cache (LLC)

• Interconnect (For example Intel’s Quick Path Interconnect (Quick

Path Interconnect (QPI)), AMD’s Hyper Transport)

• DRAM controllers

2. Non-uniform memory access (NUMA) where the time for memory ac-

cess between a core and main memory is not uniform and where main

memory is distributed between locality domains or groups called NUMA

nodes

3. Dynamic power management (DPM) of multiple power domains (CPU

sockets, DRAM).

These inherent complexities in modern multicore processors pose critical

challenges to system modelling experts and algorithm designers.

Figure 2.1: A typical processor architecture of a modern multicore CPU

Figure 2.1 depicts a representative architecture of modern multicore CPU

processors. It comprises two NUMA nodes or sockets (NUMA node 0 and

21

2.2. TERMINOLOGY FOR POWER AND ENERGY IN COMPUTING

NUMA node 1) having 12 physical cores each. Each core has two threads

and a private L1 and L2 caches. All the cores in a NUMA node share the L3

cache. Furthermore, each socket has a DDR4 based RAM. The time it takes

to access a data block depends on its location in the cache hierarchy and/or

the main memory. The closer the data in the memory to the core, the less

time it takes to access it. For example, the time it takes to access data in the

L1 cache is less than it takes for L2 or L3 caches. Because all the cores in

a socket share the same L3 cache, there is a severe resource contention for

it between threads that should be tackled by the algorithm designers with an

aim to optimize the energy consumption of such systems.

2.2 Terminology for Power and Energy in Com-

puting

This section presents the terminology for power and energy in computing. A

component executing an application has two types of power consumption:

• Static power

• Dynamic power

Static or idle power is the power consumed when the component is not

running an application. However, the switching activity in the component’s

circuits is responsible for dynamic power consumption.

Using the aforementioned definitions of power, we define static energy con-

sumption as the energy of a platform without the execution of an application.

Whereas, the dynamic energy consumption is calculated by subtracting the

static energy consumption from the total energy consumed by the platform

during the application run. In other words, If PS is the static power consump-

tion of the platform, ET is the total energy consumption of the platform during

the execution of an application, which takes TE seconds, then the dynamic

energy ED can be calculated as,

ED = ET − (PS × TE) (2.1)

22

2.2. TERMINOLOGY FOR POWER AND ENERGY IN COMPUTING

In this thesis, we focus purely on the minimization of the dynamic energy

consumption for reasons below:

1. Static energy consumption is a constant (or an inherent property) of a

platform that can not be optimized. It does not depend on the application

configuration.

2. Although the static energy consumption is a major concern in embed-

ded systems, it is becoming less compared to the dynamic energy con-

sumption due to advancements in hardware architecture design in HPC

systems.

3. We target applications and platforms where dynamic energy consump-

tion is the dominating energy dissipator.

4. Finally, we believe its inclusion can underestimate the true worth of an

optimization technique that minimizes the dynamic energy consumption.

We elucidate using two examples from published results.

• In our first example, consider a model that reports predicted and

measured the total energy consumption of a system to be 16500J

and 18000J. It would report the prediction error to be 8.3%. If it is

known that the static energy consumption of the system is 9000J,

then the actual prediction error (based on dynamic energy con-

sumption only) would be 16.6% instead.

• In our second example, consider two different energy prediction

models (MA and MB) with the same prediction errors of 5% for ap-

plication execution on two different machines (A and B) with same

total energy consumption of 10000J. One would consider both the

models to be equally accurate. But supposing it is known that the

dynamic energy proportions for the machines are 30% and 60%.

Now, the true prediction errors (using dynamic energy consump-

tions only) for the models would be 16.6% and 8.3%. Therefore,

the second model MB should be considered more accurate than

the first.

23

2.3. METHODS FOR ENERGY CONSUMPTION MEASUREMENT IN
COMPUTING

2.3 Methods for Energy Consumption Measure-

ment in Computing

We now take a brief tour through the beginnings and consequent firm estab-

lishment of performance events as the dominant parameters in energy predic-

tive models. While presenting this brief history, we also review popular energy

consumption simulators, system-level energy measurement, on-chip sensors,

notable models that predict energy consumption based on utilization or activ-

ity factors estimated from performance events, and other energy models using

additive approaches. Finally, we provide research works that critically examine

the accuracy of PMC based energy predictive models.

2.3.1 Power model in CMOS circuits

Power consumption in CMOS circuits is proportional to the voltage supplied

to the processor, V 2
dd, and the respective frequency, f . The model can be

represented as:

P = Ceff ∗ V 2
dd ∗ f (2.2)

where Ceff is the effective capacitance or coefficient of proportionality.

This model has been used in many earlier studies implementing dynamic

voltage and frequency techniques to correlate power dissipation. A simpler

model is found in the literature is:

P = Ceff ∗ f 3 (2.3)

This model considers frequency as proportional to the supply voltage. En-

ergy savings from memory voltage and frequency scaling techniques have

been widely investigated. We will highlight some of the works in the upcoming

sections.

24

2.3. METHODS FOR ENERGY CONSUMPTION MEASUREMENT IN
COMPUTING

2.3.2 Energy and Power Modelling Using Simulators

In the late 1990s, architects began studying in earnest architecture-level power

models in simulators similar to how performance is studied in cycle-level ar-

chitecture simulators.

The Cacti tool (that is an open-source tool for cache access and cycle

time modelling) [55] originally written to study latencies of caches in detail,

subsequently provided their dynamic power and leakage power models. It

was presented by HP Laboratories Inc. and provides thorough, near accurate

memory access time and energy estimates. However it is not a trace-driven

simulator, so energy consumption resulting in the number of hits or misses is

not accounted for a particular application.

In 2000, whole-processor power simulators, SimplePower [56] and Wattch

[57], appeared. SimplePower [56] provided detailed dynamic power models of

integer ALU and other architectural units in an in-order pipelined processor.

The authors analyzed the energy consumption of applications from embedded

video and signal processing systems. The experimental results suggested that

the simulator helps to point-out the key power-consuming components for the

compiler and system designers to optimize.

The Wattch [56] tool focused on an out-of-order super-scalar pipeline. It

was claimed to be 1000× faster than other competitive tools with a compro-

mise of 10% on overall accuracy. The authors further explained the use of

Wattch to explore the possibility of dynamic thermal management techniques

to reduce power leakages.

While both the aforementioned simulators used analytical methods for

modeling power, IBM’s PowerTimer [58] used empirical techniques. It pre-

dicted the power consumption of an architectural unit based on the measured

power consumption of a similar unit in an existing microprocessor and scaling

it appropriately; taking into account variations in size and design. Furthermore,

the authors also conducted a power-performance tradeoff study.

Li et al. presented McPAT [59] as an integrated power, area, and tim-

ing modeling framework for multithreaded, multicore, and manycore architec-

tures. It supports the estimation of power consumption for various compo-

25

2.3. METHODS FOR ENERGY CONSUMPTION MEASUREMENT IN
COMPUTING

nents in a multiprocessor, which includes shared caches, integrated memory

controllers, in-order and out-of-order processor cores, and networks-on-chip.

At the microarchitectural level, McPAT includes models for the fundamental

components of a chip multiprocessor and at the circuit and technology level, it

supports critical-path timing, area, dynamic, short-circuits, and leakage power

modeling. McPAT help architects to use new standards combining perfor-

mance with both area and power. The authors show as the die cost increases

with the area, hence the area is a critical design constraint. However, McPAT

has known limitations in power estimation, which were reported in [60].

The research and development towards simulators for power and energy

analysis had the following main drawbacks:

• Speed of exploration: This is a serious limitation of simulators because

simulations can take a lot of time (sometimes in hours). The quick and

reliable method to model the energy consumptions of the platforms is

desired for real-time systems for online energy and performance analy-

sis.

• Lack of rapid adaptability and sustainability to fast-changing hardware

architecture landscape: As explained before the inherent complexities

in modern computing platforms because of resource contention and

NUMA, it is difficult to have an accurate simulator that can tackle and

take into account the behavior of applications in terms of energy on such

platforms.

Because of the limitations of simulators, three mainstream alternatives

were:

1. System-level measurements using physical power meters.

2. On-chip power sensors.

3. Energy Predictive Models.

We now discuss these approaches in detail.

26

2.3. METHODS FOR ENERGY CONSUMPTION MEASUREMENT IN
COMPUTING

2.3.3 System-level measurements using physical power

meters

Initially, an appealing alternative route to simulators was allowed by direct

physical measurements of power consumption using power meters. Although

power meters provided the total power consumption of a system, the major

challenges to be addressed are the following:

• Accurate decomposability of power consumption at the fine-grained

component level of granularity: The decomposition of energy is impor-

tant to understand the hotspot components which should be optimized

for energy. This component-level decomposition of energy consumption

is also significant in order to optimize the application by distributing the

workload. A naïve approach to optimize the application for dynamic en-

ergy consumption will have exponential complexity. The approach must

explore all possible workload distributions. For each workload distribu-

tion, it determines the total dynamic energy consumption during the par-

allel execution of the workload by applying the Formula 2.1. It, then,

returns the workload distribution with the minimum total dynamic energy

consumption.

• Reduce the time complexity of system-level measurements: The reliable

dynamic energy consumption measurements of the application during

its execution is time consuming activity and contain atleast three stages.

First, without the execution of the application, one must measure the

base power of the system. Second, with the execution of application the

total energy consumption of the applications should be measured. In the

third stage, the base power should be multiplied with the execution time

of the application and then should be subtracted from the total energy

consumption to obtain the dynamic energy consumption. Furthermore,

the measurements have to be repeated several times until they fall in a

desired statistical confidence as the production environments such as

data centers are not stable, i.e., the workload vary drastically, which may

result in difference of energy consumption measurements for multiple

27

2.3. METHODS FOR ENERGY CONSUMPTION MEASUREMENT IN
COMPUTING

executions of same application.

To the best of our knowledge, Fahad et al. [61] present the first solution

method called Additive energy Modelling of Hybrid Applications (AnMoHA)

to accurately determine the application component level energy consumption

employing system-level power measurements using power meters, which we

consider to be the ground truth. Authors experimentally validate AnMoHA on

a cluster of two hybrid heterogeneous computing nodes for two well-known

and highly optimized parallel applications, matrix-matrix multiplication and 2D

fast Fourier transform for a diverse range of problem sizes. The error be-

tween the combined profile of additive energy models determined by using the

summation of the application component energy profiles and parallel profiles

determined experimentally ranges between 2% and 5%. There are two short-

comings of this work 1) the component-level decomposition has been shown

to be accurate up to socket-levels and the accuracy for core-level energy con-

sumption decomposition is not known and 2) due of complexity of the method,

it can not be applied in real-time situations, in general, for modern data-center

and cloud computing platforms executing hundreds of applications.

We do not find any other work using system-level measurements to provide

the component-level energy consumption decomposition of the applications.

2.3.4 On-chip power sensors

As an alternative approach to system-level measurements, on-chip power sen-

sors have been used to provide the decomposition of energy consumption at

a component level [62]. We now review some of the notable research works in

this area.

Burtsher et. al [63] examined the power profiles of three different Nvidia

GPUs (Tesla K20c, K20m, and K20x) when executing an n-body simulation

benchmark using integrated sensors. The authors find that accurate power

profiling of an application running on GPU is not straightforward, and there are

multiple anomalies when using the on-board sensors on K20 GPUs. They find

inaccurate power readings on K20c and K20m, which lag behind the expected

profile based on a software model, which they consider to be the ground truth.

28

2.3. METHODS FOR ENERGY CONSUMPTION MEASUREMENT IN
COMPUTING

Furthermore, the authors observe that the power sampling frequency on K20

GPUs varies greatly and the GPU sensor does not periodically sample power

readings.

Intel CPUs offer Running Average Power Limit (RAPL) [30] to monitor

power and control frequency (and voltage). RAPL was based on a software

model using performance monitoring counters (PMCs) as predictor variables

to measure energy consumption for CPUs and DRAM for processor gener-

ations preceding Haswell such as Sandybridge and Ivybridge E5. For latest

generation processors such as Haswell and Skylake, however, RAPL uses

separate voltage regulators (VR IMON) for both CPU and DRAM. VR IMON

is an analog circuit within voltage regulator (VR), which keeps track of an es-

timate of the current. It, however, adds some latency because the measured

current-sense signal has a delay from the actual current signal to CPU. This

latency may affect the accuracy of the readings. The CPU samples this read-

ing periodically for calculating the power [33]. The accuracy of VR IMON for

different input current ranges is not known. According to [33], DRAM and CPU

IMON report higher errors when the system is idle and DRAM VR inaccuracy

can be large if the system is allocated memory capacity much lower than its

capability.

Hackenberg et al. [64] studied the RAPL accuracy on Haswell generation

processors by running different micro-benchmarks. They compare the RAPL

readings with total system (AC) power consumption using power meters and

find the RAPL readings in a strong correlation with AC measurements.

Fahad et al. [36] present the first detailed study on the accuracy of on-

chip power sensors and show that deviations of the energy measurements

provided by on-chip sensors including Intel RAPL from the system-level power

measurements (considered as ground truth) do not motivate their use in the

optimization of applications for dynamic energy.

Let us now compare the work of [64] and [36].

• The authors [64] compare the total power consumption by the system

with AC power and power consumption by the micro-benchmarks with

RAPL. However, [36] uses HPC applications and compare their dynamic

29

2.3. METHODS FOR ENERGY CONSUMPTION MEASUREMENT IN
COMPUTING

energies calculated using system-level power measurements with the

ones calculated using Intel RAPL. Therefore, both use different refer-

ence domains.

• In [64], authors run micro-benchmarks in different threading configura-

tions, whereas in [36], authors build the energy profiles of scientific appli-

cations representing real-world workloads using different configurations

(problem size, CPU threads, CPU cores).

• [64] run their micro-benchmarks on the Haswell platform only whereas

for [36], the experimental testbed is more diverse and includes advance

generations of Intel CPU micro-architecture.

• [64] find a correlation between the measurements with both tools (power

meters and RAPL) on Haswell. However, they could not confirm RAPL

can be correlated owing to different reference domain. [36] further ex-

tended the knowledge-base by showing that we can not calibrate the

measurements with both tools because of their qualitative differences

and interlacing behavior.

Alberto et al. [65] [66] presented an energy measurement library (EML)

to provide a flexibility in between the hardware and software portability for the

instrumented code between several processor architectures. EML addressed

the issues such as the lack of abstraction for the users to be able to seam-

lessly collect energy measurements from low-level APIs and measurement

tools with in a desired precision. The authors demonstrate that EML intro-

duces low energy consumption overheads and therefore can be used as a

light-weight standard interface.

Intel Xeon Phi co-processors are equipped with on-board Intel System

Management Controller chip (SMC) [32] providing energy consumption that

can be programmatically obtained using Intel manycore platform software

stack (Intel MPSS) [67]. The accuracy of Intel MPSS is not available. AMD

starting from Bulldozer micro-architecture equip their processors with an esti-

mation of average power over a certain interval through the Application Power

30

2.3. METHODS FOR ENERGY CONSUMPTION MEASUREMENT IN
COMPUTING

Management (APM) [68] capability. [35] reports that APM provides highly in-

accurate data, particularly during the processor sleep states. In this work, we

will not cover tools for AMD processors.

Nvidia Management Library NVML [31] provides programmatic interfaces

to obtain the energy consumption of an Nvidia GPU from its on-chip power

sensors. There are, however, some issues with the energy measurements

provided by Nvidia on-chip sensors [63]. One important issue is how to relate

the energy consumption of an application and the energy consumption of the

computing elements that are involved in the execution of the application and

containing the sensors. While sensors may provide the power consumption

of a component within sufficient accuracy, they may not determine the energy

consumed by an application when executing on the same component within

the same accuracy window. For example: while the accuracy of a power read-

ing is reported by NVML for an Nvidia GPU to be 5%, researchers found that

when an application is executed on the GPU, the accuracy is often less.

To address these challenges of the inaccuracies and shortcomings in

system-level measurements and on-chip sensor-based readings, the perfor-

mance events based approaches estimating power consumption of architec-

tural units based on their activity factors were invented and eventually became

the core of current energy predictive models. The accelerated adoption of this

approach was made possible by the simultaneous provision of hardware per-

formance counters (almost akin to standardization) by all the major hardware

vendors, and also the availability of lightweight tools providing portable APIs

to determine the PMCs.

2.3.5 Notable Energy Predictive Models on Modern Com-

puting Platforms

Energy Predictive Models for CPUs

Energy Predictive Modelling using Additive Approaches:

In this section, we review some of the popular models that use an additive

approach to measure or model the energy consumption on a computing plat-

31

2.3. METHODS FOR ENERGY CONSUMPTION MEASUREMENT IN
COMPUTING

form. This approach sums the contributions of individual energy-consuming

elements in a processor and memory.

One of the simplest additive models was presented by Roy et al. [69] which

represents an algorithm energy consumption as a weighted sum of the energy

consumption by CPU and memory. The authors contribute by providing a

simple model constructed from a more complicated model that better models

the energy obtained from the ground truth.

Lewis et al. [70] proposed a system-wide energy model (based on hard-

ware performance counters) as a summation of power models of proces-

sor, memory (DRAM), fans, motherboard (chipset) peripherals, and hard-disk

drive. The model uses statistical estimation methods and build a linear regres-

sion model for run-time power analysis. The authors evaluated their model

using SPEC CPU benchmarks and showed the accuracy of the energy model

within an error of 4%.

Basmadjian et al. [71] presented a similar model including more compo-

nents such as network interface card and power supply unit to the equation for

constructing a similar aggregated power model of the server as a function of

resource utilization by its sub-components. The authors evaluated their model

for tower and blade server and demonstrate the error rate of 2% and 10% for

the best-case and worst-case scenarios, respectively.

Energy Predictive Modelling Using Utilization Parameters:

The early energy modelling efforts include works where researchers use

the resource utilization parameters such as CPU, memory, network, and I/O

utilization statistics with the motivation to capture all the possible energy-

consuming activities.

Heath et al. [72] proposed a linear model that is based on the utilization of

CPU, disk, and the network. The proposed power model for a compute node

can be represented by the following formula:

P = Cbase + C1 × UCPU + C2 × UDisk + C3 × UNet (2.4)

whereCbase is the base power of a node. C1, C2, andC3 are the coefficients

in the linear model for utilization of CPU, disk, and network. The experimental

32

2.3. METHODS FOR ENERGY CONSUMPTION MEASUREMENT IN
COMPUTING

setup consists up of a server with four Pentium III processor-based PCs and

four Celeron based blade servers. The total power consumed is calculated as

the sum of power consumption of the hardware resources. The authors use

micro-benchmarks (also known as synthetic applications) to stress each com-

ponent individually with different workload configurations. The results showed

an average and maximum errors of 1.3% and 2.7%, respectively.

A more complex power model (Mantis) is proposed in [52] relying on the

utilization metrics of CPU, disk, and network components and PMCs for mem-

ory. The proposed model can be represented using the following formula:

P = Cbase + C1 × UCPU + C2 × UMem + C3 × UDisk + C4 × UNet (2.5)

where Cbase is the base power of a computing node. UCPU , UMem, UDisk,

and UNet represent the CPU, memory, disk, and network utilizations respec-

tively. The authors performed the experiments on two servers using di-

verse applications from SPEC and Stream benchmarking suites with vary-

ing resource needs. The models were calibrated for blade servers using

idle runs. Several benchmarks including SPECcpu2000, SPECjbb2000, and

SPECweb2005 benchmarks suites and STREAM benchmarks were used in

the experiments.

Fan et al. [73] propose a simple linear model that correlates the power

consumption of a single-core processor with its utilization. Their proposed

model can be represented as follows:

PCPU = Pbase + (Pmax − Pbase)× (U/100) (2.6)

where Pbase represents the base power of a processor. Pmax is the power

at maximum utilization and U signifies the utilization of the processor. The

authors obtained the tuning parameter r during the calibration process using

a similar model to [52].

Energy profiling for applications using CPU and disk activity is the subject

in [74]. The author proposes an automated energy profiling tool to help a

programmer select between different energy and performance trade-offs.

33

2.3. METHODS FOR ENERGY CONSUMPTION MEASUREMENT IN
COMPUTING

Feng et al. [75] conducted a similar study using the PowerPack tool. Their

work focused on building actual power consumption profiles in a cluster of ho-

mogeneous nodes. This is done by isolating power by component and mea-

suring the power consumed in the CPU, memory, disk, and network interface

components. Each node consists of 933 MHz Intel Pentium III processor, four

256 M SDRAM, 15.3GB IBM DTLA-307015 DeskStar disk, and an Intel 82559

Ethernet Pro 100 onboard Ethernet controller and is connected to a group of

sensor resistors on a circuit board. A digital multimeter measures the voltage

on each resistor taking 4 measurements per second. The data measured by

the meters are further logged and processed.

Li et al. [76] attributed power consumption to CPU, memory, and disk uti-

lization. OS routine power characterization is provided based on the obser-

vation that power is strongly correlated with the instructions per cycles (IPC)

and a linear regression model is proposed. The processor, 0.18-micron pro-

cessing technology, runs at 900 MHz frequency and 2.0 V supply voltage. The

authors used SPECjvm98, SPECint95, and PostgreSQL benchmarks in the

experiments. The estimation model profiles power consumption at the routine

level with less than 10% error.

Rivoire et al. [77], [78] study and compare five full-system real-time power

models using a variety of machines and benchmarks. Four of these mod-

els are utilization-based whereas the fifth includes CPU PMCs in the model

variable set along with the utilization of CPU and disk. They report that the

PMC-based model is the best overall in terms of accuracy since it accounted

for the majority of the contributors to the system’s dynamic power (especially

the memory activity). They also question the generality of their PMC-based

model since the PMCs used in their model variable set may not have the

same essence and hence not portable across different architectures (Intel,

AMD, etc).

A linear model that takes into account CPU utilization and I/O bandwidth

is described in [79] to predict the power consumption of a server. Their model

can be represented by the following equation:

P = Cbase + C1 × UCPU + C2 × UI/O (2.7)

34

2.3. METHODS FOR ENERGY CONSUMPTION MEASUREMENT IN
COMPUTING

where Cbase is the base power of a compute node. UCPU the CPU utiliza-

tion, UI/O is the I/O bandwidth in MBPS. C1 and C2 are the coefficients of the

model. The authors use a WattsUp power-meter to obtain external system-

level power consumption to calibrate their model.

Dargie et al. [80] use the statistics of CPU utilization to model the relation-

ship between the power consumption of the multicore processor and workload

quantitatively. They demonstrate that the relationship is quadratic for a single-

core processor and linear for multicore processors.

Another similar non-linear model based on CPU utilization is presented by

Jung et al. [81]. The authors proposed Mistral that provides a trade-off be-

tween power consumption, performance, and transient costs. The power con-

solidation manager takes adaptation actions based on the estimation of power

consumption returned by the power model. The parameters of the estimation

model are tuned during the offline model calibration phase to fit actual power

usage measured using a power meter. The experiments were performed on

Pentium 4 hosts running at 1.8 GHz. The evaluated benchmarks run on a

three-tier servlet version of RUBiS. The authors showed that their models pro-

vide an estimation error of approximately 5%.

Tools to Determine PMCs:

Performance events or performance monitoring counters (PMCs) are

special-purpose registers provided in modern microprocessors to store the

counts of software and hardware activities. We will use the acronym PMCs to

refer to software events, which are pure kernel-level counters such as page-

faults, context-switches, etc. as well as micro-architectural events originating

from the processor and its performance monitoring unit called the hardware

events such as cache-misses, branch-instructions, etc. They have been devel-

oped primarily to aid low-level performance analysis and tuning. Remarkably

while PMCs have not been used for performance modeling, over the years,

they have become dominant predictor variables for energy predictive model-

ing. Modern hardware processors provide a large set of PMCs. Consider the

Intel Haswell multicore server CPU. On this server, there are a total of 167

PMCs.

Before we review in detail the PMC based models using different ap-

35

2.3. METHODS FOR ENERGY CONSUMPTION MEASUREMENT IN
COMPUTING

proaches for various processor architectures such as CPUs, GPUs, and other

accelerators, we present the popular tools to collect the PMCs.

PAPI [37] provides a standard API for accessing PMCs available on most

modern microprocessors. It provides two types of events, native events and

present events. Native events correspond to PMCs native to a platform. They

form the building blocks for present events. A preset event is mapped onto

one or more native events on each hardware platform. While native events

are specific to each platform, preset events obtained on different platforms

can not be compared.

Likwid [38] provides command-line tools and an API to obtain PMCs for

both Intel, POWER8, and AMD processors on the Linux OS. It contains a

variety of performance measurement and application tunning tools such as

likwid-pin and likwid-bench. Furthermore, Likwid is light-weight, which means

the performance overheads of Likwid is less than 6000 cycles. The recent sta-

ble released version is Likwid 5.0 with support to extract PMCs of accelerators

such as GPUs.

For Nvidia GPUs, CUDA Profiling Tools Interface (CUPTI) [82] can be used

for obtaining the PMCs for CUDA applications. CUPTI provides the following

APIs: Activity API, Callback API, Event API, Metric API, and Profiler API. Sam-

ple PMCs that can be obtained using these APIs are total instruction count,

data rate, memory load, and store counts, cache hits and misses, number of

branches instructions and etc.

Intel PCM [83] is used for reading PMCs of core and uncore (which in-

cludes the QPI) components of an Intel processor. It is exposed to program-

mers as a C++ API and is also able to provide energy measurements from

Intel on-chip sensors. It can further support the statistical analysis of core

frequencies, QPI power, and DRAM activities.

Linux Perf [84] also called perf_events can be used to gather the PMCs for

CPUs in Linux. It also comes as a performance profiling tool suite including

perf stat, perf record, perf report, perf annotate, perf top and perf bench.

Techniques for Selection of PMCs for Linear Energy Predictive Modeling:

A vast majority of PMC based models are linear. We now survey the works

using PMCs as model variables in linear power and energy predictive models.

36

2.3. METHODS FOR ENERGY CONSUMPTION MEASUREMENT IN
COMPUTING

Singh et al. [44] use PMCs provided by AMD Phenom processor. They

divide the PMCs into four categories and rank them in the increasing order

of correlation with power using the Spearman’s rank correlation. Then they

select the top PMC in each category (four in total) for their energy prediction

model. The authors implemented a power-aware scheduler and evaluated

their model’s accuracy using OpenMP versions of NAS parallel and SPEC

benchmarking suite and showed a median error of 5.8% and 3.9%, respec-

tively.

Goel et al. [45] divide PMCs into event categories that they believe cap-

ture different kinds of microarchitectural activity. The PMCs in each category

are then ordered based on their correlation to power consumption using the

Spearman’s rank correlation. The PMCs with less correlation are then investi-

gated by analyzing the accuracy of several models that employ them.

Kadayif et al. [85] present a PMC-based model for predicting the energy

consumption of programs on an UltraSPARC platform. The platform provides

30 different PMCs. However, they use only eight and do not specify how they

have selected them. The authors use a number of clock cycles to determine

the performance of the programs. A further limitation of their methodology is

the restriction to read only two events at a time.

Lively et al. [46] employ 40 PMCs in their predictive model. They use an

elaborate statistical methodology to select PMCs. They compute the Spear-

man’s rank correlation for each PMC and remove those below a threshold.

They compute the principal components (PCA) of the remaining PMCs and

select those with the highest PCA coefficients. Bircher et al. [41] employ an

iterative linear regression modeling process where they add a PMC at each

step and stop until the desired average prediction error is achieved.

Song et al. [47] select a group of PMCs (for their energy model of Nvidia

Fermi C2075 GPU) that are strongly correlated to power consumption based

on the Pearson correlation coefficient.

Witkowski et al. [48] use PMCs provided by the Perf tool for their model.

They use the correlation (Pearson correlation coefficient) between a PMC and

the measured power consumption and select those PMCs, which have high

correlation coefficients. Although they find that the PMCs related to DRAM

37

2.3. METHODS FOR ENERGY CONSUMPTION MEASUREMENT IN
COMPUTING

have a low correlation with power consumption, they still use them since these

variables signify the intensity of DRAM operations, which contributes signifi-

cantly to power consumption.

Gschwandtner et al. [42] deal with the problem of selecting the best sub-

set of PMCs on the IBM POWER7 processor, which offers over 500 different

PMCs. The first manually select a medium number of hardware counters that

they believe are prominent contributors to energy consumption. Then they em-

pirically select a subset from their initial selection. Jarus et al. [49] use PMCs

provided by the Perf tool for their models. The PMCs employed differ for dif-

ferent models and are selected using the two-stage process. In the first stage,

PMCs that are correlated 90% or above are selected. In the second stage,

stepwise regression with forwarding selection is used to decide the final set of

PMCs.

Haj-Yihia et al. [43] start with a set of 23 PMCs (offered by Likwid) based on

expert knowledge of the Intel architecture. Then they perform linear regression

iteratively where they drop PMCs (one by one) that do not impact the average

prediction error of their model. The authors used RAPL power measurements

as ground truth and evaluated their models using SPEC CPU benchmarks.

Wu et al. [50] use the Spearman correlation coefficient and PCA to se-

lect the subset of PMCs, that are highly correlated with power consumption.

Chadha et al. [51] select a particular PMC from the list of PAPI PMCs available

for their platform and check if it fits well with the linear regression model. If it

does, they select it as a key parameter for their modeling and experimental

study. Otherwise, they skip it.

From the literature, we can divide the techniques to select the PMCs into

the following three main categories:

1. Techniques that consider all the PMCs with the goal to capture all pos-

sible contributors to energy consumption. To the best of our knowledge,

we found no research works that adopt this approach. This could be due

to several reasons:

• Gathering all PMCs requires a lot of programming effort and time.

38

2.3. METHODS FOR ENERGY CONSUMPTION MEASUREMENT IN
COMPUTING

• Interpretation (for example, visual) of the relationship between en-

ergy consumption and PMCs is difficult especially when there is a

large number of PMCs.

• Dynamic or runtime models must choose PMCs that can be gath-

ered in just one application run.

• Typically, simple models (those with fewer parameters) are pre-

ferred over complex models not because they are accurate but be-

cause simplicity is considered a desirable virtue.

2. Techniques that are based on a statistical methodology such a correla-

tion and principal component analysis for the selection of PMCs.

3. Techniques that use expert advice or intuition to pick a subset (that may

not necessarily be determined in one application run) and that, in ex-

perts’ opinion, is a dominant contributor to energy consumption.

Energy predictive modelling using PMCs:

One of the first models correlating PMCs to energy values was developed

by Bellosa et al. [86]. Their model is based on events such as integer oper-

ations, floating-point operations, memory requests due to cache misses, etc.

that they believed to strongly correlate with power consumption. To trigger

these events, special micro-benchmarks are written and executed for several

seconds.

Icsi et al. [87] propose an elaborate methodology to determine component-

level power estimates from the access rates of the components, which are

based on PMCs. The authors selected a total of 22 strictly collocated energy

consuming components. The constructed power model can be represented by

following equation:

TotalPower =
22∑
i=1

Power(Ci) +BPower (2.8)

Where BPower is the base power of their evaluation platform.

Li et al. [76] propose power models for the operating system (OS) based

on their observations of a strong correlation between instructions per cycle

39

2.3. METHODS FOR ENERGY CONSUMPTION MEASUREMENT IN
COMPUTING

(IPC) and OS routine power. Their results show the power estimation errors of

less than 6%.

Lee et al. [88] adopt a statistically rigorous approach to derive regression

models using performance events to predict power. The authors first derived a

model baseline using statistical methods. The initial baseline is further refined

using different sampled observations. Their results showed a median and

maximum error rate of 4.3% and 24.5%, respectively.

Powell et al. [89] use a linear regression model to estimate activity factors

and power for a large number of micro-architectural structures using a small

number of PMCs that represent utilization statistics such as IPC and load rate.

The evaluation against SPEC CPU benchmarks for their power model showed

an average error of 8%.

Goel et al. [45] derive per-core power models using PMC values and

temperature readings. They evaluated their models on a four and eight-core

machine using SPEC OMP, NAS, and SPEC 2006 benchmarking suites and

showed that the prediction error lies in between 1.2% to 4.4%.

Bertran et al. [90] present a power model that provides a per-component

power breakdown of a multicore CPU. Their model is based on activity factors

obtained from PMCs for various components in a multicore CPU.

Bircher et al. [41] propose an iterative modeling procedure to predict power

using PMCs. They use PMCs that trickle down from the processor to other

subsystems such as CPU, disk, GPU, etc and PMCs that flow inward into the

processor such as Direct Memory Access (DMA) and I/O interrupts.

Rotem et al. [30] present a software power model, which eventually be-

came RAPL, in Intel Sandybridge. This model predicts the energy consump-

tion of core and uncore components (QPI, LLC) based on some PMCs (which

are not disclosed).

Lastovetsky et al. [10] present an application-level energy model where

the dynamic energy consumption of a processor is represented by a func-

tion of problem size. Unlike PMC-based models that contain hardware-related

PMCs and do not consider problem size as a variable, this model takes into

account the highly non-linear and non-convex nature of the relationship be-

tween energy consumption and problem size for solving optimization problems

40

2.3. METHODS FOR ENERGY CONSUMPTION MEASUREMENT IN
COMPUTING

of data-parallel applications on homogeneous multicore clusters for energy.

Notable Energy Predictive Models for Software and Hardware Accelera-

tors

We now survey a few notable research works that have proposed energy pre-

dictive models for accelerators such as GPU, Xeon Phi, and FPGA.

Hong et al. [91] propose an energy prediction model for an Nvidia GPU

similar to the PMC-based unit power prediction approach of [87]. The authors

calculated the power consumption as a sum of individual power consump-

tion of all the components that compose a Streaming Multiprocessor (SM)

and GDDR memory. They evaluated the accuracy of their model on NVIDIA

GTX280 GPU platform. The results show the power prediction errors of 8.94%

and energy savings up to 10.99%. The main limitation of their model is the lack

of portability because it takes as an input the detailed architectural specifica-

tions.

Nagasaka et al. [92] present a statistical approach that uses GPU per-

formance counters exposed for CUDA applications to predict the power con-

sumption of GPU kernels. Their models are evaluated using NVIDIA GeForce

GTX 285 GPU and resulted in an average error and maximum error of 4.7%

and 23% to predict the total power consumption, respectively.

Song et al. [47] propose power and energy prediction models that employ

a configurable, back-propagation, artificial neural network (BP-ANN). The pa-

rameters of the BP-ANN model are ten carefully selected PMCs of a GPU. The

values of these PMCs are obtained using the CUDA Profiling Tools Interface

(CUPTI) [82] during the application execution.

Shao et al. [93] construct an instruction-level energy model of a Xeon Phi

processor. They studied the scalability of processor cores considering the

energy per instruction. The authors evaluated their model using the Linpack

benchmark suite and show an energy gain of 10%.

Khatib et al. [94] propose a linear instruction-level model to predict dynamic

energy consumption for soft processors in FPGA. The model considers both

inter-instruction effects and the operand values of the instructions. The authors

41

2.3. METHODS FOR ENERGY CONSUMPTION MEASUREMENT IN
COMPUTING

evaluate the prediction accuracy of their model using different benchmarks and

show that it has an average error of 4.7%.

Energy Predictive Models for HPC Applications

In [95], authors presented a power model for parallel scientific applications by

using PMCs. Their work extends [87] for Intel-based processors. The authors

modelled the power of all the components using a linear function composed of

access rates of various processor blocks. The sum of all the power-consuming

blocks gives the total power.

Dongarra et al. [96] evaluated the energy consumptions of HPC applica-

tions from LAPACK benchmark suite using Intel RAPL. The authors argue that

the RAPL API serves as a competitive alternative to power meters.

In [48] and [49], authors propose system-wide power prediction models

for HPC servers based on performance counters. They cluster real-life HPC

applications into groups and create specialized power models for them.

Gschwandtner et al. [42] present linear regression models based on hard-

ware counters for prediction of energy consumption of HPC applications exe-

cuting on IBM POWER7 processor. They pick a small subset from 500 different

hardware counters offered by the POWER7 processor. The authors report a

maximum prediction error of 15%.

Wu et al. [50] present a PMC-based energy predictive model for HPC

application workloads.

In [97], authors develop CPU and DIMM power and energy models using

artificial neural networks. They study three important HPC kernels, matrix

multiplication, stencil computation, and LU factorization. To derive component-

level power measurements, they use the PowerMon2 apparatus. They report

an absolute error rate of 5.5% for the total power consumption and energy

usage predictions for the three kernels.

Cabrera et al. [98] presented an analytical energy model for high-

performance Linpack benchmarks to provide the energy consumption estima-

tion of a Linpack application before its execution. Because of the ability to pre-

dict the energy consumption of an application beforehand, the authors demon-

42

2.3. METHODS FOR ENERGY CONSUMPTION MEASUREMENT IN
COMPUTING

strate that their model can be integrated in the operating systems schedulers.

Important Surveys on Energy Predictive Models

Mobius et al. [99] present a survey of power consumption models for single-

core and multicore processors, virtual machines, and servers. They conclude

that linear regression-based approaches dominate and that one prominent

shortcoming of these models is that they use static instead of variable work-

loads for training the models.

Dayarathna et al. [100] present an in-depth survey on data center power

modeling. They organize power models based on two classifications:

• Hardware-centric

• Software-centric

Bridges et al. [101] present a survey of techniques to monitor and model

the energy consumption of GPUs. They cover in-depth PMC-based modeling

of GPUs. They also state that the accuracy of results from internal power

meters must be thoroughly verified using external power meters.

O’Brien et al. [40] survey predictive power and energy models focusing on

the highly heterogeneous and hierarchical node architecture in modern HPC

computing platforms. The authors studied the accuracy of linear regression-

based energy predictive models using applications from Intel math kernel li-

braries such as DGEMM and FFT.

Francisco et al. [102] presented a detailed survey on the energy mea-

surements tools for high-performance ultrascale computing at hardware and

software levels. The authors highlighted that the energy measurements ca-

pabilities differ on a number of platforms where available and therefore the

community still lacks the availability of a standard.

Critiques of PMCs for Energy Predictive Modelling

However, there are research works that have critically examined and high-

lighted the poor prediction accuracy of PMCs for energy predictive modeling.

43

2.4. ENERGY CONSUMPTION OPTIMIZATION APPROACHES IN
COMPUTING

Economou et al. [52] highlight the practical limitation, which is the inability

to obtain all the PMCs simultaneously or in one application run. They also

mention the lack of PMCs to model the energy consumption of disk I/O and

network I/O.

McCullough et al. [53] evaluate the competence of predictive power models

for modern node architectures and show that linear regression models show

prediction errors as high as 150%. They suggest that direct physical measure-

ment of power consumption should be the preferred approach to tackle the

inherent complexities posed by modern node architectures.

Hackenberg et al. [35] present a study of various power measurement

strategies, which includes Intel RAPL [30]. They report that the accuracy of

RAPL depends on the type of workload and is quite poor for workloads that

use the hyper-threading feature. They also report that the accuracy is poor for

applications with small execution times and becomes better only for applica-

tions with longer execution times since the predictions are energy averages.

O’Brien et al. [40] survey predictive power and energy models focusing

on the highly heterogeneous and hierarchical node architecture in modern

HPC computing platforms. Using a case study of PMCs, they highlight

the poor prediction accuracy and ineffectiveness of models to accurately

predict the dynamic power consumption of modern nodes due to the inherent

complexities (contention for shared resources such as Last Level Cache

(LLC), NUMA, and dynamic power management). Their results show the

poor prediction accuracy of PMC based models for HPC applications with an

average error of up to 64%.

2.4 Energy Consumption Optimization Ap-

proaches in Computing

In this section, we review some of the state-of-the-art energy minimization

techniques on modern computing platforms. There are two broad categories

of energy optimization techniques in computing:

44

2.4. ENERGY CONSUMPTION OPTIMIZATION APPROACHES IN
COMPUTING

1. System-level and component-level optimization techniques: Tech-

niques to tweak and tune different operating parameters such as fre-

quency, voltage, number of cores, cache size with an aim to reduce the

energy consumption of a computing system at a system level.

2. Application-level optimization techniques: While microarchitectural

and chip-design advancements have been the leading providers of en-

ergy savings, application-level energy optimization strategies emerged

as a promising approach. This approach takes into account the

application-level parameters such as data partitioning, algorithmic cost,

communication cost, etc to reduce the energy consumption for the exe-

cution of applications on a given platform.

2.4.1 System-level and Component-level Optimization

Following are the three main approaches to optimize energy consumption at a

system level:

1. Dynamic voltage and frequency scaling (DVFS): This technique is

based on setting the operating frequency of a system or a component

such as a socket according to the workload to obtain the optimal perfor-

mance and energy-saving configurations [103, 104, 105, 106, 107, 108].

2. Dynamic power management (DPM): Techniques that use processor

reconfiguration in terms of the number of cores, cache and memory

sizes, operating frequency, and voltage to obtain the power saving set-

ting [109, 110, 111, 112, 113, 114, 115].

3. Component-level management (CPM): Techniques that deal with opti-

mizing the energy of the sub-components of the processor such as like

main memory, caches, and I/O, etc [116, 117, 118, 119, 120, 121, 122].

2.4.2 Application-level Optimization

In this thesis, we focus on application-level energy optimization techniques.

We now present some of the works in this area.

45

2.4. ENERGY CONSUMPTION OPTIMIZATION APPROACHES IN
COMPUTING

Demmel et al. [123] present the energy optimization method at the algo-

rithm level using a dense matrix-multiplication and n-body simulation problem.

The conducted the experiments on an Intel Atom CPU and a GPU platform.

Their results show the existence of a strong scaling in energy. They show that

the GPU workloads execute faster but consume more energy consumption so

there always exists a trade-off between power and computation intensity.

Alberto et al. [124] presented a generic heuristic based approach to im-

prove the energy consumption in iterative parallel algorithms with the dynamic

load balancing. The authors demonstrated using detailed experimentation that

the proposed solution method attain less energy consumption than the homo-

geneous workload balance.

Choi et al. [125] present an extension of the roofline model for energy.

Their model represents the energy consumption of the algorithms as a func-

tion of the number of operations, level of concurrency, and data flow from the

memory. The authors show that a 28 nm GPU consumes less static power

than a 40 nm GPU. The results show that floating-point operations are a use-

ful metric to represent the energy-consuming activities on a system.

Alessi et al. [126] present an extension of OpenMP called OpenMPE to

tackle the power management of the shared memory processors. The authors

demonstrate the use of OpenMPE to achieve multi-objective optimizations for

applications using popular techniques such as dynamic voltage and frequency

scaling.

Silva at al. [127] study the energy-aware frequency tuning and an opti-

mal number of active cores for inter-node high-performance computing ap-

plications. The authors use an application-agnostic power model for their

workloads. The power model is build using Complementary Metal-oxide-

semiconductor (CMOS) logic designs as a function of the operating frequency.

Wang et al. [128] present an energy optimization method for single-chip

heterogeneous processors (SCHP). The authors show that the overall opti-

mization of applications and their partitioning between the CPU and acceler-

ators such as GPU outperforms the optimization of workload partitioning by

13%.

The works reviewed above do not consider workload distribution as a de-

46

2.5. SUMMARY

cision variable. We now survey some of the works that consider workload

partitioning using problem size as a decision variable to obtain energy sav-

ings.

Lastovetsky et al. [129], [9] discovered that the performance profiles of the

applications on a Xeon Phi processor are not smooth. The authors study the

variations in performance profiles for a real-life data-parallel scientific applica-

tion, that is, Multidimensional Positive Definite Advection Transport Algorithm

(MPDATA). The authors discovered that load imbalancing can be used to op-

timize the workload partitioning and minimizing the computation time of its

parallel execution.

To further enhance the work in this area, Lastovetsky et al. [130], Reddy

et al. [27], and Khaleghzadeh et al. [131] presented theoretical works that

provide the data partitioning algorithms by keeping time and energy of com-

putations as the objective parameters. The authors demonstrated that in the

multicore era, load balancing is no longer synonymous with optimization. Fur-

thermore, they outline recent methods and algorithms for the optimization of

parallel applications for performance and energy on modern computing plat-

forms, which do not rely on load balancing and often return imbalanced but

optimal solutions.

2.5 Summary

Energy consumption is a leading design constraint along with performance in

all computing settings. Two main approaches to enhance energy efficiency

in computing are: (1). hardware approach, and (2). software approach.

Software-based energy efficiency is achieved at two levels: (1). system-level

and (2). application-level. While the system-level optimization approaches

are largely driven by hardware innovations in manufacturing energy-efficient

devices, the application-levels solution methods include optimization of appli-

cations by using application-level decision variables and predictive models for

performance and energy consumption of applications. In our work, we focused

exclusively on the application-level approach.

47

2.5. SUMMARY

Accurate and reliable measurement of energy consumption for an applica-

tion execution is significant to energy optimization at an application level. The

three main approaches to provide it are: (a). System-level physical measure-

ments by the use of power meters, (b). Measurements of current and voltage

by using on-chip power sensors and (c). Energy predictive models. Physi-

cal power-meter based measurements are accurate but they cannot provide

fine-grained component level energy decomposition which is a crucial input for

application-level optimization methods. On-chip sensor-based measurement

approaches can provide the decomposition of energy consumption at a com-

ponent level but are inaccurate for application-level energy measurements.

However, we found that the sensor readings are deterministic and reproducible

and therefore can be used as model variables in energy predictive models.

Energy predictive models have emerged as a top-notch alternative to esti-

mate the energy consumption of an application. Initial energy predictive mod-

els use utilization based parameters such as model variables to capture all

the energy-consuming activities in a platform. However, previous researches

show that these pure utilization models were inaccurate. A vast majority of

such models are linear and employ performance monitoring counters (PMCs)

as predictor variables. PMCs are special-purpose registers provided in mod-

ern microprocessors to store the counts of software and hardware activities.

A pervasive approach is to determine the energy consumption of a hardware

component based on the linear regression of the PMC counts in the com-

ponent during an application run. The total energy consumption is then cal-

culated as the sum of these individual consumptions. While the models allow

determination of fine-grained decomposition of energy consumption during the

execution of an application, there are research works highlighting their poor

accuracy [52, 53, 40, 36].

While the main advantage of a software energy predictive model is a de-

termination of fine-grained decomposition of energy consumption during the

execution of an application at less cost compared to the ground truth approach

using power meters, this approach suffers from following serious drawback:

• Complexity of model construction and lack of consensus among the re-

48

2.5. SUMMARY

search works, which report prediction accuracies ranging from poor to

excellent.

• A vast majority of research works select PMCs solely on the basis of

their high positive correlation with energy consumption without any deep

understanding of the physical significance of the model variables.

• A sound theoretical framework to understand the fundamental signifi-

cance of the model variables with respect to the energy consumption

and the causes of inaccuracy or the reported wide variance of the accu-

racy of the models is lacking.

49

Chapter 3

A Comprehensive Study on the

Accuracy of State-of-the-art

Energy Predictive Models on

Multicore CPUs

Accurate measurement of energy consumption during an application execution

is key to energy minimization techniques at the software level. There are three

popular approaches to providing it: (a) System-level physical measurements

using external power meters, (b) Measurements using on-chip power sensors,

and (c) Energy predictive models.

In this chapter, we present a comparative study on the prediction accuracy

of linear energy predictive models employing performance monitoring coun-

ters (PMCs) as predictor variables with system-level energy measurements

and on-chip sensors (Intel RAPL) for multicore CPUs 1. The rest of this chap-

ter is divided into three main sections. In Section 3.1, we explain our experi-

mental setup with details on the experimental platforms, system-level energy

measurement methods, list of applications in the test suite, and PMC gather-

ing methodology. In Section 3.2, we present our experimental results. Finally

Section 3.3 present the summary of results, learned lessons and recommen-

1This chapter is chiefly based on [36].

50

3.1. EXPERIMENTAL SETUP

dations for future research directions.

3.1 Experimental Setup

In this section, we explain our experimental setup and energy measurement

methodology.

3.1.1 Experimental platforms

We employ two nodes for our comparative study:

• HCLServer1 has an Intel Haswell multicore CPU having 24 physical

cores with 64 GB main memory and

• HCLServer2 has an Intel Skylake multicore CPU consisting of 22 cores

and 96 GB main memory.

Detailed specifications for both servers are given in Table 3.1. These nodes

are representative of computers used in cloud infrastructures, supercomput-

ers, and heterogeneous computing clusters.

Each node has a power meter installed between its input power sockets

and the wall A/C outlets.

3.1.2 System-Level Physical Measurements Using Power

Meters

HCLServer1 and HCLServer2 are connected with a Watts Up Pro power me-

ter. Watts Up Pro power meters are periodically calibrated using the ANSI

C12.20 revenue-grade power meter, Yokogawa WT310. We present our de-

tailed methodology on calibration in Appendix D.

The maximum sampling speed of Watts Up Pro power meters is one sam-

ple every second. The accuracy specified in the data-sheets is ±3%. The

minimum measurable power is 0.5 watts. The accuracy at 0.5 watts is ±0.3
watts.

51

3.1. EXPERIMENTAL SETUP

Table 3.1: Specification of the Intel Haswell (HCLServer1) and Intel Skylake
(HCLServer2) multicore CPU Server

Hardware Specifications Intel Haswell Server (HCLServer1) Intel Skylake Server (HCLServer2)
Processor Intel E5-2670 v3 @2.30GHz Intel(R) Xeon(R) Gold 6152
Micro-architecture Haswell Skylake
Thread(s) per core 2 2
Cores per socket 12 N/A
Socket(s) 2 1
NUMA node(s) 2 1
L1d cache 32 KB 32 KB
L11 cache 32 KB 32 KB
L2 cache 256 KB 1024 KB
L3 cache 30720 KB 30976 KB
Main memory 64 GB DDR4 96 GB
TDP 240 W 140 W
Idle Power 58 W 32 W

Software Specifications
OS release CentOS 7 Ubuntu 16.04 LTS
Linux kernel 3.10 3.10
OpenMP version 3.1 3.1
MPI version 3.2.1 N/A
Compiler gcc 4.8.5 gcc 4.8.5
Python version 3.4.3 3.6.8
Likwid version 4.1 4.3.2
Intel MKL Version 2017.0.2 2017.0.2

52

3.1. EXPERIMENTAL SETUP

We use the HCLWattsUp interface [132] to obtain the power measurements

from the WattsUp Pro power meters. The interface and the methodology used

to obtain a data point are explained in Appendix A.2.

We follow a statistical methodology (Appendix A.3) to ensure the reliabil-

ity of our experimental results. The methodology determines a sample mean

(execution time or dynamic energy or PMC) by executing the application re-

peatedly until the sample mean meets the statistical confidence criteria (95%

confidence interval, a precision of 0.025 (2.5%)) Student’s t-test is used to de-

termine the sample mean. The test assumes that the individual observations

are independent and their population follows the normal distribution. We use

Pearson’s chi-squared test to ensure that the observations follow the normal

distribution.

We follow a detailed experimental methodology to obtain reliable compo-

nent level energy consumption measurements using HCLWattsUp API and

Intel RAPL presented by Fahad et al. [36]. We present it in Appendix A.3.1

and A.3.2.

3.1.3 Methodology to Obtain PMCs on HCLServers

We compare in this section the prediction accuracy of linear energy predic-

tive models employing performance monitoring counters (PMCs) as predictor

variables with HCLWattsUp and Intel RAPL.

Modern computing platforms such as multicore CPUs provide a large set

of PMCs. The most popular tools that can be used to gather the values of

the PMCs for a platform include Likwid [38], PAPI [37], Intel PCM [83], and

Linux perf [84]. The programmers, however, can obtain only a small number

of PMCs (typically 3-4) during an application run due to the limited number

of hardware registers dedicated to storing them. Consider, for example, the

Intel Haswell server whose specification is shown in Table 3.1. Likwid tool

provides 167 PMCs for this platform. To obtain the values of the PMCs for

an application, the application must be executed about 53 times since only a

limited number of PMCs can be obtained in a single application run.

There are three main restrictions that make it difficult for the process of

53

3.1. EXPERIMENTAL SETUP

employing PMCs as a predictor variable in models. First, there is a large num-

ber of PMCs to consider. In a typical Intel Haswell architecture (see Table 3.1),

there are 167 PMCs offered by Likwid tool. Second, a lot of programming effort

and time are required to automate and collect all the PMCs. This is because

of the limited number of hardware registers available on platforms for storing

the PMCs. In a single run of an application, only 3-4 PMCs can be collected.

Third, a model purely based on PMCs lacks portability. The reason is that all

the PMCs available on a CPU platform may not necessarily be available on a

GPU platform. This makes the process of collecting a suitable subset of PMCs

critical. The main techniques used to select PMCs for modeling can be divided

into the following four categories:

• Techniques that consider all the PMCs offered for a computing platform

with the goal to capture all possible contributors to energy consumption.

To the best of our knowledge, we found no research works that adopt

this approach because of the models’ complexities.

• Techniques using a statistical methodology such as correlation, principal

component analysis (PCA), and so forth. to choose a suitable subset

[133, 134].

• Techniques that use expert advice or intuition to pick a subset of PMCs

and that, in experts’ opinion, are dominant contributors to energy con-

sumption [43].

Table 3.2 shows the list of applications employed in our experimental suite.

The application suite contains highly optimized memory bound and compute-

bound scientific routines such as DGEMM and FFT from Intel Math Kernel

Library (MKL), benchmarks from NASA Application Suite (NAS), Intel HPCG,

stress, naive matrix-matrix multiplication and naive matrix-vector multiplica-

tion. The reason to select a diverse set of applications is to avoid bias in our

models and to have a range of PMCs for different executions of diverse appli-

cations.

For a given application, we measure three quantities during its execu-

tion on our platforms. First, is the dynamic energy consumption provided

54

3.1. EXPERIMENTAL SETUP

Table 3.2: List of Applications

Application Description
MKL FFT Intel optimized 2-dimensional Fast Fourier Transform
MKL DGEMM Intel optimized 3-dimensional Dense Matrix Multiplication
HPCG Intel optimized High Performance Conjugate Gradient. 3-

dimensional regular 27-point discretization of an elliptic partial dif-
ferential equation

NPB IS Integer Sort, Kernel for random memory access that sort small inte-
gers using the bucket sort technique

NPB LU Lower-Upper Gauss-Seidel solver
NPB EP Embarrassingly Parallel random number generator
NPB BT Solve synthetic system of nonlinear partial differential equations us-

ing Block Tri-diagonal solver
NPB MG Approximate 3-dimensional discrete Poisson equation using the V-

cycle Multi Grid on a sequence of meshes
NPB FT Discrete 3-dimensional fast Fourier Transform
NPB DC Data Cube
NPB UA Unstructured Adaptive mesh solving heat equation with convection

and diffusion from moving ball.
NPB CG Conjugate Gradient
NPB SP Scalar Penta-diagonal solver
NPB DT Data traffic
stress CPU, disk and I/O stress
Naive MM Naive Matrix-matrix multiplication
Naive MV Naive Matrix-vector multiplication

by HCLWattsUp API [132] using the methodology explained in Section A.3.1.

Second, we measure the execution time. Lastly, we collect all the PMCs avail-

able on our platforms using Likwid tool [38].

Likwid can be used using a simple command-line invocation as given below

where the EVENTS represents PMCs (4 at maximum in one invocation) of the

given application, APP:

likwid-perfctr -f -C S0:0-11@S1:12-23 -g EVENTS APP

The application (APP) during its execution is pinned to physical cores (0–

11, 12–23) of our platform. Likwid use likwid-pin to bind the application to

the cores on any platform and lack the facility to bind an application to mem-

ory. Therefore, we have used numactl, a command-line Linux tool to pin our

applications to available memory blocks.

For Intel Haswell and Intel Skylake platform, Likwid offers 164 PMCs and

385 PMCs, respectively. We eliminate PMCs with counts less than or equal

to 10 since we found them to have no physical significance for modeling the

55

3.2. ACCURACY OF LINEAR ENERGY PREDICTIVE MODELS AND
LIMITATIONS

dynamic energy consumption and they are non-reproducible over several runs

of the same application on our platforms.

The reduced set contains 151 PMCs for Intel Haswell and 323 for Intel Sky-

lake. As in a single application run, we can collect only 4 PMCs, the processor

of PMC collection is tedious. Moreover, some PMCs can only be collected

individually or in sets of two or three for an application run. Therefore, we ob-

serve that each application must be executed about 53 and 99 times on Intel

Haswell and Intel Skylake platform, respectively, to collect all the PMCs.

3.2 Accuracy of Linear Energy Predictive Models

and Limitations

To facilitate clarity of exposition, the mathematical form of the linear regression

models can be stated as follows: ∀a = (ak)
n
k=1, ak ∈ R,

f
E
(a) = β0 + β × a =

n∑
k=1

βk × ak (3.1)

where β0 is the intercept and β = {β1, ..., βn} is the vector of coefficients

(or the regression coefficients) In real life, there usually is stochastic noise

(measurement errors) Therefore, the measured energy is typically expressed

as

f̃
E
(a) = f

E
(a) + ε (3.2)

where the error term or noise ε is a Gaussian random variable with expectation

zero and variance σ2, written ε ∼ N (0, σ2).

We now divide our experiments into the following two classes, Class A and

Class B, as follows:

1. Class A: In this class, we study the accuracy of platform-level linear re-

gression models using a diverse set of applications.

2. Class B: In this class, we study the accuracy of application-specific linear

regression models.

56

3.2. ACCURACY OF LINEAR ENERGY PREDICTIVE MODELS AND
LIMITATIONS

3.2.1 Class A: Accuracy of Platform-Level Linear PMC-

Based Models

We select Intel Haswell multicore CPU platform (Table 3.1) for this class of

experiments. We select the PMCs commonly used by these models and they

are listed below:

• IDQ_MITE_UOPS (X1)

• IDQ_MS_UOPS (X2)

• ICACHE_64B_IFTAG_MISS (X3)

• ARITH_DIVIDER_COUNT (X4)

• L2_RQSTS_MISS (X5)

• FP_ARITH_INST_RETIRED_DOUBLE (X6)

These PMCs count floating-point and memory instructions and are consid-

ered to have a very high positive correlation with energy consumption. Table

3.3 shows the correlation of the PMCs with the dynamic energy consumption.

Table 3.3: Correlation of performance monitoring computers (PMCs) with dy-
namic energy consumption (ED). Correlation matrix showing relationship of
dynamic energy with PMCs. 100% correlation is denoted by 1.

ED X1 X2 X3 X4 X5 X6

ED 1 0.53 0.50 0.42 0.58 0.99 0.99
X1 0.53 1 0.41 0.25 0.39 0.45 0.44
X2 0.50 0.41 1 0.19 0.99 0.48 0.48
X3 0.42 0.25 0.19 1 0.21 0.41 0.40
X4 0.58 0.39 0.99 0.21 1 0.57 0.56
X5 0.99 0.45 0.48 0.41 0.57 1 0.99
X6 0.99 0.44 0.48 0.40 0.56 0.99 1

We used all the applications listed in Table 3.2 with different configurations

of problem sizes to build a data-set of 277 points. Each point represents the

data for one application configuration containing its dynamic energy consump-

tion and the PMC counts. We split this data-set into two subsets, one for

57

3.2. ACCURACY OF LINEAR ENERGY PREDICTIVE MODELS AND
LIMITATIONS

training (with 227 points) the models and the other to test (50 points) the ac-

curacy of models. We used this division based on best practices and experts’

opinions in this domain.

Using the dataset, we build 6 linear models {A, B, C, D, E, F} using regres-

sion analysis. Model A employs all the selected PMCs as predictor variables.

Model B is based on five best PMCs with the least energy correlated PMC (X3)

removed. Model C uses four PMCs with two least correlated PMCs (X2, X3)

removed, and so on until Model F, which contains just one the most correlated

PMC (X6).

The models are summarized in the Table 4.6. We also show the minimum,

average, and maximum prediction errors of RAPL.

We will now focus on the minimum, average, and maximum prediction

errors of these models. They are (2.7%, 32%, 99.9%) respectively for

Model A. Model B based five most correlated PMCs has prediction errors

of (0.53%, 21.80%, 72.9%) respectively. The average prediction error sig-

nificantly dropped from 32% to 21%. The prediction errors for Model C are

(0.75%, 29.81%, 77.2%) respectively. The average prediction error, in this

case, is in between that of Model A and Model C. Model F with just one most

correlated PMC (X6) has the least average prediction error of 14%. The pre-

diction errors of RAPL are (4.1%, 30.6%, 58.9%) From these results, we con-

clude that selecting PMCs using correlation with energy does not provide any

consistent improvements in the accuracy of linear energy predictive models.

Table 3.4: Linear predictive models (A-F) with intercepts and RAPL with their
minimum, average and maximum prediction errors.

Model PMCs Intercept Followed by Coefficients
Percentage Pre-
diction Errors
[min, avg, max]

A X1, X2, X3, X4, X5, X6 3× 10−9, 1.9× 10−8, 3.3× 10−7, −1× 10−6, 6× 10−8, −9.3× 10−11, 10 (2.7, 32, 99.9)
B X1, X2, X4, X5, X6 3× 10−9, 1.9× 10−8, −1× 10−6, 6.2× 10−8, −1.2× 10−10, 230 (0.53, 21.80, 72.9)
C X1, X4, X5, X6 3.7× 10−9, 7.9× 10−9, 7.5× 10−8, −5.1× 10−10, 270 (0.75, 29.81, 77.2)
D X4, X5, X6 6.7× 10−8, 9.4× 10−8, −9.7× 10−10, 490 (0.21, 23.19, 80.42)
E X5, X6 9.7× 10−8, −1.02× 10−9, 520 (2, 21.03, 83.40)
F X6 1.5× 10−9, 740 (2.5, 14.39, 34.64)
RAPL (4.1, 30.6, 58.9)

We also identified a few more causes of inaccuracy in linear regression-

based models by looking at the coefficients of PMCs employed in them. Salient

58

3.2. ACCURACY OF LINEAR ENERGY PREDICTIVE MODELS AND
LIMITATIONS

observations of these models are outlined below:

• All the models have a significant intercept (β0) Therefore, the model

would give predictions for dynamic energy based on the intercept val-

ues even for the case when there is no application executing on the

platform, which is erroneous. We consider this to be a serious draw-

back of existing linear energy predictive models (Chapter 2), which do

not understand the physical significance of the parameters with dynamic

energy consumption.

• Model A has negative coefficients (β = {β1, ..., β6}) for PMCs, X4 and

X6. Similarly, Model B has negative coefficients for PMC X4 and X6.

and in Models C-E, X6 has a negative coefficient. The negative coef-

ficients in these models can give rise to negative energy consumption

predictions for specific applications where the counts for X4 and X6 are

relatively higher than the other PMCs.

3.2.2 Class B: Accuracy of Application-Specific PMC-

Based Models

In this section, we study the accuracy of application-specific energy predictive

models built using linear regression. We choose a single-socket Intel Skylake

server (Table 3.1) for the experiments. We choose two highly optimized sci-

entific kernels: Fast Fourier Transform (FFT) and Dense Matrix-Multiplication

application (DGEMM), from Intel Math Kernel Library (MKL).

We select six PMCs (Y1-Y6) listed in the Table 5.9, which have been em-

ployed as predictor variables in energy predictive models given in literature

(Chapter 2).

We build a dataset containing 362 and 330 points representing DGEMM

and FFT for a range of problem sizes from 6400 × 6400 to 29,504 × 29,504

and 22,400 × 22,400 to 41,536 × 41,536, respectively, with a constant step

sizes of 64. We split the dataset into training and test datasets. Training

dataset for DGEMM and FFT contains 271 and 255 points used to train the

59

3.2. ACCURACY OF LINEAR ENERGY PREDICTIVE MODELS AND
LIMITATIONS

Table 3.5: Selected PMCs for Class B experiments along with their energy
correlation for DGEMM and FFT. 0 to 1 represents positive correlation of 0%
to 100%.

Selected PMCs Corr DGEMM Corr FFT
Y1 FP_ARITH_INST_RETIRED_DOUBLE 0.99 0.98
Y2 MEM_INST_RETIRED_ALL_STORES 0.99 0.99
Y3 MEM_INST_RETIRED_ALL_LOADS 0.98 0.55
Y4 MEM_LOAD_RETIRED_L3_MISS 0.60 0.99
Y5 MEM_LOAD_RETIRED_L1_HIT 0.98 0.34
Y6 ICACHE_64B_IFTAG_MISS 0.99 0.77

energy predictive models. Test dataset contains 91 and 75 points for both

applications respectively.

Using the datasets, we build two linear models for both applications. These

are Model MM and Model FT. Figure 3.2a,b shows the percentage deviations

of dynamic energy consumption of PMC models and RAPL from HCLWattsUp

for DGEMM and FFT, respectively.

Figure 3.1a,b show the dynamic energy profiles of 2D FFT and DGEMM

from Intel MKL on HCLServer2 obtained using HCLWattsUp, Intel RAPL and

predictive models, respectively. The maximum and the average difference

between Intel RAPL and Model MM profiles from HCLWattsUp is 205% and

36.13%, and, 218% and 26%. For FFT, the maximum and the average differ-

ence between both profiles from HCLWattsUp is 156.38% and 28.67%, and,

155% and 31%.

Comparing with HCLWattsUp, the minimum, average and maximum error

for DGEMM using Model MM and RAPL are (0, 26, 218) and (0.4, 35, 161),

respectively. In the case of FFT, the minimum, average, and maximum error

using Model FT and RAPL is (0.8, 27, 147) and (0.3, 31, 155) respectively.

We observe that both models perform better in terms of average prediction

accuracy than RAPL.

60

3.2. ACCURACY OF LINEAR ENERGY PREDICTIVE MODELS AND
LIMITATIONS

(a) MKL-DGEMM

(b) 2D MKL-FFT

Figure 3.1: Dynamic energy consumption of Predictive Models, Intel RAPL
and HCLWattsUp on HCLServer2.

61

3.2. ACCURACY OF LINEAR ENERGY PREDICTIVE MODELS AND
LIMITATIONS

(a) Model MM

(b) Model FT

Figure 3.2: Percentage deviations of predictive models and RAPL from
HCLWattsUp. The dotted lines represent the averages.

62

3.3. SUMMARY

3.3 Summary

In this chapter, we show that energy consumption measurements using In-

tel RAPL significantly deviate from system-level energy measurements using

external power-meters. Therefore, we presented a comprehensive study com-

paring the accuracy of state-of-the-art energy predictive models (that emerged

as a preeminent alternative to on-chip sensors) against system-level phys-

ical measurements using external power meters, which we consider to be

the ground truth. To compare the approaches reliably, we used a published

methodology to determine the accurate component-level dynamic energy con-

sumption of an application using system-level physical measurements using

power meters, which are obtained using HCLWattsUp API.

For the study comparing the prediction accuracy of energy predictive mod-

els with the ground truth, we use an experimental platform containing a test

suite of seventeen benchmarks executed on an Intel Haswell multicore CPU

and an Intel Skylake multicore CPU. The average error between energy predic-

tive models employing performance monitoring counters (PMCs) as predictor

variables and the ground truth ranges from 14% to 32% and the maximum

reaches 100%. The sources of this inaccuracy are the following:

• Model parameters in most cases are not deterministic and reproducible.

• Model parameters are selected chiefly based on statistical correlation

with energy and not their physical significance originating from funda-

mental physical laws such as conservation of energy of computing.

Our experimental results illustrated that methods solely based on corre-

lation with energy to select PMCs are not effective in improving the average

prediction accuracy.

We will now state our recommendations and possible future directions.

Since system-level physical measurements based on power meters are ac-

curate and the ground truth, we recommend using this approach as the fun-

damental building block for the fine-grained device-level decomposition of the

energy consumption during the parallel execution of an application executing

on several independent computing devices in a computer.

63

3.3. SUMMARY

We envisage hardware vendors maturing their on-chip sensor technology

to an extent where energy optimization programmers will be provided neces-

sary information of how a power measurement is determined for a component,

the frequency or sampling rate of the measurements, its reported accuracy

and finally how to programmatically obtain this measurement with sufficient

accuracy and low overhead.

Linear energy predictive models can be employed in the optimization of

applications for dynamic energy provided they meet the aforementioned limi-

tations. In the next chapter, we will present additivity as a selection criterion

for PMCs to be used in energy predictive models.

64

Chapter 4

Energy Predictive Models for

Computing: Theory, Practical

Implications, and Experimental

Analysis on Multicore CPUs

Software energy predictive models emerged as a popular alternative to deter-

mine the energy consumption of an application. A vast majority of the models

employ Performance events or performance monitoring counters (PMCs) as

the model variables. PMCs are special-purpose registers provided in mod-

ern microprocessors to store the counts of software and hardware activities.

We will use the acronym PMCs to refer to software events, which are pure

kernel-level counters such as page-faults, context-switches, etc. as well as

micro-architectural events originating from the processor and its performance

monitoring unit called the hardware events such as cache-misses, branch-

instructions, etc. They have been developed primarily to aid low-level perfor-

mance analysis and tuning. Remarkably while PMCs have not been used for

performance modeling, over the years, they have become dominant predictor

variables for energy predictive modeling. This chapter proposes a novel se-

lection criterion for PMCs called additivity, which can be used to determine

the subset of PMCs that can potentially be used for reliable energy predictive

65

modeling 1.

Modern hardware processors provide a large set of PMCs. Consider the

Intel Haswell multicore server CPU whose specification is shown in Table 3.1.

On this server, the PAPI tool [37] provides 53 hardware performance events.

The Likwid tool [38], [39] provides 167 PMCs. This includes events for uncore

(collection of components of a processor not in the core but essential for core

performance) and micro-operations (µops) of CPU cores specific to Haswell

architecture that are not provided by PAPI. However, all the PMCs can not

be determined using a single application run since only a limited number of

registers are dedicated to collecting them. For example, to collect all the Likwid

PMCs for a single runtime configuration of an application on the server, the

application must be executed 53 times. It must be also pointed out that energy

predictive models based on PMCs are not portable across a wide range of

architectures. While a model based on either Likwid PMCs or PAPI PMCs

may be portable across Intel and AMD architectures, it will be unsuitable for

GPU architectures.

Therefore, there are three serious constraints that pose difficult challenges

to employing PMCs as predictor variables for energy predictive modeling.

First, there is a large number of PMCs to consider. Second, a lot of pro-

gramming effort and time are required to automate and collect all the PMCs.

This is because all the PMCs can not be collected in one single application

run. Third, a model purely based on PMCs lacks portability. In this chapter, we

focus mainly on techniques employed to select a subset of PMCs to be used

as predictor variables for energy predictive modeling. We now present a brief

survey of them.

O’Brien et al. [40] survey the state-of-the-art energy predictive models in

HPC and present a case study demonstrating the ineffectiveness of the dom-

inant PMC-based modeling approach for accurate energy predictions. In the

case study, they use 35 carefully selected PMCs (out of a total of 390 available

in the platform) in their linear regression model for predicting dynamic energy

consumption. [41], [42], [43] select PMCs manually, based on in-depth study

of architecture and empirical analysis. [45], [46], [47], [48], [49], [50] select

1This chapter is chiefly based on [54] and [135].

66

PMCs that are highly correlated with energy consumption using Spearman’s

rank correlation coefficient (or Pearson’s correlation coefficient) and principal

component analysis (PCA). [41], [49] use variants of linear regression to re-

move PMCs that do not improve the average model prediction error.

We classify the existing techniques for the selection of PMCs into three

categories. The first category contains techniques that consider all the PMCs

with the goal to capture all possible contributors to energy consumption. To the

best of our knowledge, we found no research works that adopt this approach.

This could be due to several reasons: a) Gathering all PMCs requires a lot of

programming effort and time; b) Interpretation (for example, visual) of the re-

lationship between energy consumption and PMCs is difficult especially when

there is a large number of PMCs; c) Dynamic or runtime models must choose

PMCs that can be gathered in just one application run; d) Typically, simple

models (those with fewer parameters) are preferred over complex models not

because they are accurate but because simplicity is considered a desirable

virtue.

The second category consists of techniques that are based on a statistical

methodology. The last category contains techniques that use expert advice or

intuition to pick a subset (that may not necessarily be determined in one ap-

plication run) and that, in experts’ opinion, is a dominant contributor to energy

consumption.

To summarize, PMCs are now the dominant predictor variables for mod-

eling energy consumption. Modern hardware processors provide a large set

of PMCs. Determination of the best subset of PMCs for energy predictive

modeling is a non-trivial task given the fact that all the PMCs can not be deter-

mined using a single application run. Several techniques have been devised

to address this challenge. While some techniques are based on a statistical

methodology, some use expert advice to pick a subset (that may not necessar-

ily be obtained in one application run) that, in experts’ opinion, are significant

contributors to energy consumption. However, the existing techniques have

not considered a fundamental property of predictor variables that should have

been applied in the first place to remove PMCs unfit for modelling energy. We

first address this oversight in this chapter (see Section 5.2.1).

67

While the main advantage of a software energy predictive model is the de-

termination of fine-grained decomposition of energy consumption during the

execution of an application at less cost compared to the ground truth approach

using power meters, this approach suffers from serious drawbacks such as

the complexity of model construction and lack of consensus among the re-

search works, which report prediction accuracies ranging from poor to excel-

lent. Moreover, a vast majority of research works select PMCs solely on the

basis of their high positive correlation with energy consumption without any

deep understanding of the physical significance of the model variables. In

summary, a sound theoretical framework to understand the fundamental sig-

nificance of the model variables with respect to the energy consumption and

the causes of inaccuracy or the reported wide variance of accuracy of the

models is lacking. We also bridge the gap in this chapter.

We organize the rest of this chapter as follows. We start with our formal the-

ory of energy of computing. We summarize and generalize the assumptions

behind the existing work on PMC-based energy predictive modelling. We use

a model-theoretic approach to formulate the assumed properties of the exist-

ing models in a mathematical form. We extend the formalism by adding prop-

erties, heretofore unconsidered, that are basic implications of the universal

energy conservation law. The new properties are intuitive and have been ex-

perimentally validated. The extended formalism defines our theory of energy

of computing. We term an energy predictive model satisfying the properties of

the extended model a consistent energy model. Using the theory, we prove

that a consistent energy predictive model is linear if and only if its each PMC

variable is additive in the sense that the PMC for a serial execution of two ap-

plications is the sum of PMCs for the individual execution of each application.

Then, we present experimental results followed by the conclusion.

68

4.1. ENERGY PREDICTIVE MODELS FOR COMPUTING: INTUITION,
MOTIVATION, AND THEORY

4.1 Energy Predictive Models for Computing: In-

tuition, Motivation, and Theory

We summarize and generalize the assumptions behind the existing work on

PMC-based power/energy modelling. We use a model-theoretic approach to

formulate the assumed properties of these models in a mathematical form.

Then we extend the formalism by adding properties, which are intuitive and

which we have experimentally validated but which have never been considered

previously. The properties are manifestations of the fundamental physical law

of energy conservation. We introduce two definitions based on the properties

of the extended model, called weak composability and strong composability.

We term an energy predictive model satisfying all the properties of the ex-

tended model a consistent energy model. The extended model and the two

definitions define our theory of energy predictive models for computing.

Finally, we mathematically derive properties of linear consistent energy

predictive models. We prove that a consistent energy model is linear if and

only if it is strongly composable with each PMC variable being additive. The

practical implication of this theoretical result is that each PMC variable of a lin-

ear energy predictive model must be additive. The significance of this property

is that it can be efficiently tested and hence used in practice to identify PMC

variables that must not be included in the model.

4.1.1 Intuition and Motivation

The essence of PMC-based energy predictive models is that an application

run can be accurately characterized by a n-vector of PMCs over R≥0. Any

two application runs characterized by the same PMC vector are supposed to

consume the same amount of energy. The applications in these runs may

be different but the same computing environment is always assumed. Thus,

PMC-based models are computer system-specific.

Based on these assumptions, any PMC-based energy model is formalized

by a set of PMC vectors over R≥0, and a function, f
E
: Rn
≥0 → R≥0, mapping

these vectors in the set to energy values. No other properties of the set and

69

4.1. ENERGY PREDICTIVE MODELS FOR COMPUTING: INTUITION,
MOTIVATION, AND THEORY

the function are assumed.

In this work, we extend this model by adding properties that characterize

the behavior of serial execution of two applications. To aid the exposition, we

follow some notation and terminology. A compound application is defined as

the serial execution of two applications, which we call the base applications. If

the base applications are A and B, we denote their compound application by

A ⊕ B. We will refer solely to energy predictive models hereafter since there

exists a linear functional mapping from PMC-based power predictive models

to them. When we say energy consumption, we mean dynamic energy con-

sumption. The energy consumption that is experimentally observed during the

execution of an application A is denoted by E(A). The energy consumption of

the compound application A ⊕ B, E(A ⊕ B), is the energy consumption that

is experimentally observed during the execution of the compound application.

First, we aim to reflect in the model the observation that in a stable and ded-

icated environment, where each run of the same application is characterized

by the same PMC vector, for any two applications, the PMC vector of their se-

rial execution will always be the same. To introduce this property, we add to the

model a (infinite) set of applications denoted byA. We postulate the existence

of binary operators, O = {◦
AB,k

: R≥0 × R≥0 → R≥0, A,B ∈ A, k ∈ [1, n]} so

that for each A,B ∈ A and their PMC vectors a = {ak}nk=1, b = {bk}nk=1 ∈ Rn
≥0

respectively, the PMC vector of the compound application A⊕B will be equal

to {ak ◦AB,k
bk}nk=1.

Next, we introduce properties, which are manifestations of the universal

energy conservation law. The following property essentially states that doing

nothing (signified by a null vector of PMCs, NULL = {0}nk=1 ∈ Rn
≥0) does not

consume or generate energy,

f
E
(NULL) = 0

The following property postulates that an application with a PMC vector that

is not NULL must consume some energy. The intuition behind this property

is that since PMCs account for energy consuming activities of applications,

an application with any energy consuming activity higher than zero activity (a

70

4.1. ENERGY PREDICTIVE MODELS FOR COMPUTING: INTUITION,
MOTIVATION, AND THEORY

NULL PMC vector), must consume more energy than zero.

∀a ∈ Rn
≥0 ∧ a 6= NULL, fE(a) > 0

Finally, we aim to reflect the observation that the consumed energy of com-

pound application A⊕B is always equal to the sum of energies consumed by

the individual applications A and B respectively,

E(A⊕B) = E(A) + E(B) (4.1)

To introduce this property in the extended model, we postulate the following,

∀A,B ∈ A, a = {ak}nk=1, b = {bk}nk=1 ∈ Rn
≥0, ◦AB,k

∈ O,

f
E
({ak ◦AB,k

bk}nk=1) = f
E
(a) + f

E
(b)

To summarize, while existing models are focused on abstract application

runs and lack any notion of applications, we introduce this notion in the ex-

tended model. The additional structure introduced in the extended model al-

lows one to prove the mathematical properties of energy predictive models.

4.1.2 Formal Summary of Properties of Extended Model

The formal summary of the properties of the extended model follows:

Property 4.1.1 (Inherited from Basic Model). An abstract application run is

accurately characterized by a set of n-vector of PMCs over R≥0. A null vector

of PMCs is represented by NULL = {0}nk=1. There exists a function, f
E

:

Rn
≥0 → R≥0, mapping the vectors to energy values and ∀p, q ∈ Rn

≥0, p =

q =⇒ f
E
(p) = f

E
(q).

Property 4.1.2 (Weak Composability, Applications and Operators). There ex-

ists an application space, (A,⊕), whereA is a (infinite) set of applications and

⊕ is a binary function on A, ⊕ : A × A → A. There exists a (infinite) set of

binary operators, O = {◦
PQ,k

: R≥0×R≥0 → R≥0, P,Q ∈ A, k ∈ [1, n]} so that

for each P,Q ∈ A and their PMC vectors p = {pk}nk=1, q = {qk}nk=1 ∈ Rn
≥0

71

4.1. ENERGY PREDICTIVE MODELS FOR COMPUTING: INTUITION,
MOTIVATION, AND THEORY

respectively, the PMC vector of the compound application P ⊕Q will be equal

to {pk ◦PQ,k
qk}nk=1.

Property 4.1.3 (Zero Energy, Energy Conservation). f
E
(NULL) = 0.

Property 4.1.4 (Positive-definiteness, Energy Conservation). ∀p ∈ Rn
≥0 ∧ p 6=

NULL, f
E
(p) > 0.

Property 4.1.5 (Weak Composability, Energy Conservation). ∀P,Q ∈ A, p =
{pk}nk=1, q = {qk}nk=1 ∈ Rn

≥0, ◦PQ,k
∈ O, f

E
({pk ◦PQ,k

qk}nk=1) = f
E
(p) + f

E
(q).

We term an energy predictive model satisfying all the above properties of

the extended model a consistent energy model.

4.1.3 Strong Composability: Definition

The definition of strong composability of models follows:

Definition 4.1.1 (Strong Composability). A consistent energy model is

strongly composable if ∀P,Q,R, S ∈ A, p = {pk}nk=1, q = {qk}nk=1, r =

{rk}nk=1, s = {sk}nk=1 ∈ Rn
≥0, k ∈ [1, n], ◦

PQ,k
= ◦

RS,k
.

The strong composability property of a model essentially states that binary

operators used in the model to compute PMC vectors of compound applica-

tions are not application specific. In other words, the set O consists of only n

binary operators, one for each PMC parameter, O = {◦k}nk=1, so that for any

P,Q ∈ A and their PMC vectors p = {pk}nk=1, q = {qk}nk=1 ∈ Rn
≥0, the PMC

vector of the compound application P ⊕Q will be equal to {pk ◦k qk}nk=1.

4.1.4 Mathematical Analysis of Linear Energy Predictive

Models Based on The theory of Energy Predictive

Models for computing

In this section, we mathematically derive properties of linear consistent energy

predictive models, that is, linear energy models satisfying properties (4.1.1 to

4.1.5).

72

4.1. ENERGY PREDICTIVE MODELS FOR COMPUTING: INTUITION,
MOTIVATION, AND THEORY

By definition, a model is linear iff f
E
(x) is a linear function.

To the best of our knowledge, all the state-of-the-art energy predictive mod-

els for multicore CPUs are based on linear regression. While they model total

energy consumption, we consider dynamic energy consumption for reasons

described previously. The mathematical form of these models can be stated

as follows: ∀p = (pk)
n
k=1, pk ∈ R≥0,

f
E
(p) = β0 + β × p = β0 +

n∑
k=1

βk × pk (4.2)

where β0 is called the model intercept, the β = {β1, ..., βn} is the vector of

regression coefficients or the model parameters. In real life, there usually is

stochastic noise (measurement errors). Therefore, the measured energy is

typically expressed as

f̃
E
(p) = f

E
(p) + ε (4.3)

where the error term or noise ε is a Gaussian random variable with expectation

zero and variance σ2, written ε ∼ N (0, σ2). We will ignore the noise term in

our mathematical proofs to follow.

Theorem 1. If a linear energy predictive model (4.2) is consistent, the model

intercept must be zero and the model coefficients must be positive.

Proof. From the energy conservation property 4.1.3,

NULL = {0}nk=1 ∈ Rn
≥0, fE(NULL) = 0

=⇒ β0 +
n∑

k=1

βk × 0 = 0

=⇒ β0 = 0

73

4.1. ENERGY PREDICTIVE MODELS FOR COMPUTING: INTUITION,
MOTIVATION, AND THEORY

From the energy conservation property 4.1.4,

∀k ∈ [1, n], p = {0, ..., 0, pk, 0, ..., 0} ∧ p 6= NULL,

f
E
(p) > 0

=⇒
n∑

i=1

βi × pi > 0

=⇒ βk × pk > 0

=⇒ βk > 0 since pk > 0

To summarize, a linear energy predictive model satisfying energy conser-

vation properties (4.1.3 and 4.1.4) has a zero model intercept and positive

model coefficients. Also as we only consider models satisfying property 4.1.3,

then the linearity of function f
E
(x) can be equivalently defined as follows: for

any α ∈ R≥0 and p, q ∈ Rn
≥0

f
E
(p+ q) = f

E
(p) + f

E
(q) (4.4)

and

f
E
(α× p) = α× f

E
(p) (4.5)

Theorem 2. If a consistent energy model is linear, then it is strongly compos-

able with O = {+}.

Proof. From properties 4.1.2 and 4.1.5 of weak composability, we have

∀P,Q ∈ A,∀k ∈ [1, n], p = {0, ..., 0, pk, 0, ..., 0},

q = {0, ..., 0, qk, 0, ..., 0} :

f
E
({0, ..., 0, pk ◦PQ,k

qk, 0, ..., 0}) = f
E
(p) + f

E
(q)

74

4.1. ENERGY PREDICTIVE MODELS FOR COMPUTING: INTUITION,
MOTIVATION, AND THEORY

Using the property (4.4) of a linear predictive model,

fE(p+ q) = fE(p) + fE(q)

=⇒ fE(p+ q) = f
E
({0, ..., 0, pk ◦PQ,k

qk, 0, ..., 0})

=⇒ fE({0, ..., pk + qk, 0, ..., 0})

= f
E
({0, ..., 0, pk ◦PQ,k

qk, 0, ..., 0})

=⇒ pk + qk = pk ◦PQ,k
qk (from linearity offE(x))

=⇒ ◦
PQ,k

= +

Therefore, if a consistent energy model is linear, then it is strongly com-

posable with O = {+}.

Theorem 3. If a consistent energy model is strongly composable with O = {+}

and function f
E
(x) is continuous, then it is linear.

Proof. First, we prove the first defining linearity property (4.4),

f
E
(p+ q) = f

E
(p) + f

E
(q)

for any p, q ∈ Rn
≥0.

As the model is strongly composable with O = {+}, then

∀P,Q ∈ A, ∀k ∈ [1, n] : ◦
PQ,k

= +

From property 4.1.5 of weak composability,

f
E
({pk ◦PQ,k

qk}nk=1) = f
E
(p) + f

E
(q)

=⇒ f
E
(p) + f

E
(q) = f

E
({pk ◦PQ,k

qk}nk=1)

=⇒ f
E
(p) + f

E
(q) = f

E
({pk + qk}nk=1) = fE(p+ q)

This proves the first property of linearity.

We now prove the second defining property of linearity (4.5),

f
E
(α× p) = α× f

E
(p)

75

4.1. ENERGY PREDICTIVE MODELS FOR COMPUTING: INTUITION,
MOTIVATION, AND THEORY

for any p ∈ Rn
≥0 and α ∈ R≥0.

For any integer m > 0,

fE(m× p) = fE(p+ p+ ...+ p)

= fE(p) + fE(p) + ...+ fE(p)

= m× fE(p)

For any integer n > 0,

fE(p) = fE(
p

n
) + fE(

p

n
) + ...+ fE(

p

n
)

= n× fE(
p

n
)

=⇒ 1

n
fE(p) = fE(

q

n
)

Thus, for any rational m
n
> 0,

m

n
fE(q) =

1

n
fE(q) +

1

n
fE(q) + ...+

1

n
fE(q)

= fE(
q

n
) + fE(

q

n
) + ...+ fE(

q

n
)

= fE(m×
q

n
) = fE(

m

n
q)

By definition, any real number α is a limit of an infinite sequence of rational

numbers. Consider a sequence {αk} of positive rational numbers such that

limk→+∞ αk = α. Then,

fE(α× p) = fE((lim
k→+∞

αk)× p)

= fE(lim
k→+∞

(αk × p))

= lim
k→+∞

fE(αk × p) (from continuity offE(x))

76

4.1. ENERGY PREDICTIVE MODELS FOR COMPUTING: INTUITION,
MOTIVATION, AND THEORY

As αk are positive rational numbers, fE(αk × p) = αk × fE(p). Therefore,

fE(α× p) = lim
k→+∞

(αk × fE(p))

= fE(p)× lim
k→+∞

αk

= fE(p)× α

An implication of the proof that a consistent energy model is linear if and

only if it is strongly composable with O = {+} is that each PMC variable of a

linear energy predictive model must be additive.

4.1.5 Discussion

In this section, we present practical implications of our proposed theory of

energy predictive models for computing that can be employed to construct

accurate and reliable linear energy predictive models and some guidelines, in

general, for the design of reliable energy predictive models.

• The basic practical implications of the theory for improving the prediction

accuracy of linear energy predictive models are unified in a consistency

test. The test includes the following selection criteria for model variables,

model intercept, and model coefficients:

– Each model variable must be deterministic and reproducible.

– Each model variable must be additive in the sense that the value

of the model variable for a serial execution of two applications be

equal to the sum of its values obtained for the individual execution

of each application.

– The model intercept must be zero.

– Each model coefficient must be positive.

The first two properties are combined into an additivity test for the se-

lection of PMCs. A linear energy predictive model employing PMCs and

77

4.2. ORGANIZATION OF EXPERIMENTAL RESULTS

which violates the properties of the consistency test will have poor pre-

diction accuracy.

• By definition and intuition, PMCs are all pure counters of energy-

consuming activities in modern processor architectures and as such

must be additive. Therefore, according to our theory of energy predic-

tive models for computing, any consistent, and hence accurate, energy

model, which only employs PMCs, must be linear. This also means that

any non-linear energy model only employing PMCs will be inconsistent

and hence inherently inaccurate.

• Thus, we can conclude that in order to be accurate, a non-linear energy

model must employ non-additive parameters in addition to PMCs.

• If the prediction accuracy of the best linear energy predictive model sat-

isfying the properties of the consistency test is still low, then one must

explore the use of non-linear modelling techniques, which employ non-

additive model variables that are highly positively correlated with dy-

namic energy consumption. However, non-linear models must still be

consistent (i.e., must satisfy all the properties of the extended model) to

be reliable and accurate.

Our experiments apply the practical implications of the theory of energy

predictive models for computing to the state-of-the-art energy predictive mod-

els to study their prediction accuracy.

4.2 Organization of Experimental Results

We now present our experiments and results to build and validate the effective-

ness of consistency test. Furthermore, another motivation of the experiments

is to confirm that employment of a consistent and reliable energy model yield

better results when employed in the optimization of applications.

We incorporate the implications of our theory of energy predictive models

for computing in the state-of-the-art models and study their prediction accuracy

78

4.3. GROUP 1: STUDY OF ADDITIVITY OF PMCS

using a strict experimental methodology on two modern Intel multicore servers,

HCLServer1, and HCLServer2 (Table 3.1). The experiments are divided into

five main groups: Group 1, Group 2, Group 3, and Group 4. Group 1 and 2

are performed on HCLServer1. Experiments in Group 3 use HCLServer2. The

last group uses both the servers.

The experimental studies in the groups are summarized below:

1. Group 1: A study of the additivity of PMCs for compound applications

using an additivity test.

2. Group 2: A study of the impact of consistency test on prediction accu-

racy of models built using linear regression.

3. Group 3: A study of the impact of consistency test on the accuracy

of application-specific energy predictive models. We present an experi-

mental analysis showing the effectiveness of employing the energy con-

servation property of additivity along with selection methods for PMCs

based on a high positive correlation for constructing accurate energy

predictive models.

4. Group 4: A study of optimization of a parallel matrix-matrix application

for dynamic energy using two measurement tools, IntelRAPL [30] which

is a popular mainstream tool and system-level physical power measure-

ments using power meters (using the HCLWattsUp interface [132]).

4.3 Group 1: Study of Additivity of PMCs

4.3.1 Additivity: Definition

The additivity criterion is based on a simple and intuitive rule that the value

of a PMC for a compound application is equal to the sum of its values for the

executions of the base applications constituting the compound application.

We brand a PMC non-additive on a platform if there exists a compound

application for which the calculated value significantly differs from the value

79

4.3. GROUP 1: STUDY OF ADDITIVITY OF PMCS

observed for the application execution on the platform (within a tolerance of

5.0%). If the experimentally observed PMCs (sample means) of two base

applications are e1 and e2 respectively, then a non-additive PMC of the com-

pound application will exhibit a count experimentally that does not lie between

(e1 + e2)× (1− ε) and (e1 + e2)× (1 + ε), where the tolerance, ε = 0.05.

If we fail to find a compound application (typically from a large set of diverse

compound applications) for which the additivity criterion fails, we term the PMC

as potentially additive, which means that it can potentially be used for reliable

energy predictive modeling. By definition, a potentially additive PMC must be

deterministic and reproducible, that is, it must exhibit the same value (within a

tolerance of 5.0%) for different executions of the same application with same

runtime configuration on the same platform.

The use of a non-additive PMC as a predictor variable in a model renders

it inconsistent and therefore unreliable. We explain this point using a simple

example. Consider an instance of an energy prediction model that uses a

non-additive PMC as a predictor variable. A natural and intuitive approach

to predict the energy consumption of an application that executes two base

applications one after the other is to substitute the sum of the PMCs for the

base applications in the model. However, since the PMC is non-additive, the

prediction would be very inaccurate.

Therefore, using non-additive PMCs in energy predictive models adds

noise and can significantly damage the predicting power of energy models

based on them.

We now present a test to determine if a PMC is non-additive or potentially

additive. We call it the additivity test.

4.3.2 Additivity Test

The test consists of two stages. A PMC must pass both stages to be pro-

nounced additive for a given compound application on a given platform.

1. In the first stage, we determine if the PMC is deterministic and repro-

ducible.

80

4.3. GROUP 1: STUDY OF ADDITIVITY OF PMCS

2. In the second stage, we examine how the PMC of the compound appli-

cation relates to its values for the base applications. At first, we collect

the values of the PMC for the base applications by executing them sepa-

rately. Then, we execute the compound application and obtain its value

of the PMC. Typically, the core computations for the compound applica-

tion consist of the core computations of the base applications program-

matically placed one after the other. This has to be the case for PAPI

PMCs. It must also be ensured that the execution of the compound ap-

plication takes place under platform conditions similar to those for the

execution of its constituent base applications.

If the PMC of the compound application is equal to the sum of the PMCs

of the base applications (with a tolerance of 5.0%), we classify the PMC as

potentially additive. Otherwise, it is non-additive.

We call the PMC that passes the additivity test as potentially additive. For

it to be called absolutely additive on a platform, ideally, it must pass the test for

all conceivable compound applications on the platform. Therefore, we avoid

this definition.

For each PMC, we determine the maximum percentage error. For a com-

pound application, the percentage error (averaged over several runs) is calcu-

lated as follows:

Error(%) = (| (eb1 + eb2)− ec
(eb1 + eb2 + ec)/2

|)× 100 (4.6)

where ec, eb1, eb2 are the sample means of predictor variables for the compound

application and the constituent base applications respectively. The maximum

percentage error is then calculated as the maximum of the errors for all the

compound applications in the experimental test suite.

4.3.3 Experimental Methodology to Obtain Likwid and PAPI

PMCs

In this section, we present our experimental setup to determine the additivity

of PMCs.

81

4.3. GROUP 1: STUDY OF ADDITIVITY OF PMCS

The experiments are performed on the Intel Haswell multicore CPU plat-

form (specifications given in Table 3.1). We used diverse range of applica-

tions (both compute-bound and memory-bound) in our testsuite composed

of NAS parallel benchmarking suite (NPB), Intel math kernel library (MKL),

HPCG [136], and stress [137] (description given in Table 3.2).

For each run of an application in our test suite, we measure the following:

• Dynamic energy consumption

• Execution time

• PMCs

The dynamic energy consumption during the application execution is mea-

sured using a WattsUp Pro power meter and obtained programmatically via

the HCLWattsUp interface [132]. The power meter is periodically calibrated

using an ANSI C12.20 revenue-grade power meter, Yokogawa WT210. We

explain the procedure of calibration in Appendix D. The application program-

ming interface for HCLWattsUp is further explained in Appendix A.2. We would

like to mention that the output variables (or response variables) in the perfor-

mance and energy predictive models, i.e., energy consumption and execution

time, are additive. We confirm this via thorough experimentation and therefore

we will not discuss them hereafter.

We present our experimental methodologies for determining Likwid and

PAPI PMCs in Appendix C

4.3.4 Steps to Ensure Reliable Experiments

To ensure the reliability of our results, we follow a statistical methodology

where a sample mean for a response variable is obtained from multiple ex-

perimental runs. The sample mean is calculated by executing the application

repeatedly until it lies in the 95% confidence interval and a precision of 0.025

(2.5%) has been achieved. For this purpose, Student’s t-test is used assuming

that the individual observations are independent and their population follows

82

4.3. GROUP 1: STUDY OF ADDITIVITY OF PMCS

the normal distribution. We verify the validity of these assumptions by plot-

ting the distributions of observations. Appendix A.3 presents our experimental

methodology to determine the sample mean.

The server is fully dedicated to the experiments. To ensure reliable energy

measurements, we took the following precautions:

1. HCLWattsUp API [132] gives the total energy consumption of the server

during the execution of an application using system-level physical power

measurements from the external power meters. This includes the contri-

bution of components such as NIC, SSDs, fans, etc. To ensure that the

value of dynamic energy consumption is purely due to CPUs and DRAM,

we verify that all the components other than CPUs and DRAM are idle

using the following steps:

• Monitoring the disk consumption before and during the application

run. We ensure that there is no I/O performed by the application

using tools such as sar, iotop, etc.

• Ensuring that the problem size used in the execution of an applica-

tion does not exceed the main memory and that swapping (paging)

does not occur.

• Ensuring that the network is not used by the application using mon-

itoring tools such as sar, atop, etc.

• Binding an application during its execution to resources using

cores-pinning and memory-pinning.

2. Our platform supports three modes to set the speeds of the fans: min-

imum, optimal, and full. The speeds of all the fans are set to optimal

during the execution of our experiments. We make sure there is no con-

tribution to the dynamic energy consumption from fans during an appli-

cation run, by following the steps below:

• We continuously monitor the temperature of the server and the

speed of fans, both when the server is idle, and during the applica-

tion run. We obtain this information by using the Intelligent Platform

Management Interface (IPMI) sensors.

83

4.3. GROUP 1: STUDY OF ADDITIVITY OF PMCS

• We observed that both the temperature of the server and the

speeds of the fans remained the same whether the given appli-

cation is running or not.

• We set the fans at full speed before starting the application run.

The results from this experiment were the same as when the fans

were run at optimal speed.

• To make sure that pipelining, cache effects, etc, do not happen,

the experiments are not executed in a loop and sufficient time (120

seconds) is allowed to elapse between successive runs. This time

is based on observations of the times taken for the memory utiliza-

tion to revert to base utilization and processor (core) frequencies to

come back to the base frequencies.

We now present our experimental study on the additivity of PMCs. We

divide our exploration into two classes, i.e., Class A and Class B. Class A

presents an initial study on the additivity of PMCs using a small set of com-

pound applications. However, Class B presents more detailed insights of the

additivity of PMCs with several compound applications.

4.3.5 Class A: A Preliminary Study on the Additivity of

PMCs Using Two Popular Tools

Additivity of Likwid PMCs

In this section, we determine the additivity of Likwid PMCs. We execute com-

pound applications where each application is composed from two base appli-

cations in our testsuite (shown in Table 3.2).

The list of potentially additive PMCs is shown in the Table 4.1. The list of

non-additive PMCs is presented in Table 4.2, which also reports the maximum

percentage error for each PMC.

It is noteworthy that some non-additive PMCs are used as predictor vari-

ables in many energy predictive models [43, 138, 139, 140, 44]. These are

ICache events, L2 Transactions, and L2 Requests.

84

4.3. GROUP 1: STUDY OF ADDITIVITY OF PMCS

Table 4.1: List of potentially additive Likwid PMCs

BR_INST_EXEC_ALL_BRANCHES IDQ_UOPS_NOT_DELIVERED_CYCLES_0 _UOPS_DELIV_CORE
BR_MISP_EXEC_ALL_BRANCHES IDQ_UOPS_NOT_DELIVERED_CYCLES_FE_WAS_OK
BR_INST_RETIRED_ALL_BRANCHES UOPS_EXECUTED_PORT_PORT_0
BR_MISP_RETIRED_ALL_BRANCHES UOPS_EXECUTED_PORT_PORT_1
DRAM_CLOCKTICKS UOPS_EXECUTED_PORT_PORT_2
SNOOPS_RSP_AFTER_DATA_LOCAL UOPS_EXECUTED_PORT_PORT_3
SNOOPS_RSP_AFTER_DATA_REMOTE UOPS_EXECUTED_PORT_PORT_4
RXL_FLITS_G1_DRS_NONDATA UOPS_EXECUTED_PORT_PORT_5
RXL_FLITS_G0_NON_DATA UOPS_EXECUTED_PORT_PORT_6
TXL_FLITS_G0_NON_DATA UOPS_EXECUTED_PORT_PORT_7
CPU_CLK_UNHALTED_ANY UOPS_EXECUTED_PORT_PORT_0_CORE
CPU_CLOCK_UNHALTED_THREAD_P UOPS_EXECUTED_PORT_PORT_1_CORE
CPU_CLOCK_UNHALTED_THREAD_P_ANY UOPS_EXECUTED_PORT_PORT_2_CORE
CPU_CLOCK_UNHALTED_REF_XCLK UOPS_EXECUTED_PORT_DATA_PORTS
CPU_CLOCK_UNHALTED_REF_XCLK_ANY L2_RQSTS_ALL_DEMAND_REFERENCES
HA_R2_BL_CREDITS_EMPTY_LO_HA0 L2_RQSTS_L2_PF_MISS
HA_R2_BL_CREDITS_EMPTY_LO_HA1 MEM_UOPS_RETIRED_ALL
CPU_CLOCK_THREAD_UNHALTED _ONE_THREAD_ACTIVE UOPS_EXECUTED_PORT_PORT_3_CORE
CPU_CLOCK_UNHALTED_TOTAL_CYCLES UOPS_EXECUTED_PORT_PORT_4_CORE
OFFCORE_REQUESTS_OUTSTANDING _DEMAND_DATA_RD UOPS_EXECUTED_PORT_PORT_5_CORE
OFFCORE_REQUESTS_OUTSTANDING _CYCLES_WITH_DATA_RD UOPS_EXECUTED_PORT_PORT_6_CORE
OFFCORE_REQUESTS_OUTSTANDING _DEMAND_DATA_RD_C6 UOPS_EXECUTED_PORT_PORT_7_CORE
UOPS_EXECUTED_PORT_DATA_PORTS UOPS_EXECUTED_PORT_ARITH_PORTS
OFFCORE_REQUESTS_DEMAND_DATA_RD UOPS_EXECUTED_PORT_ARITH_PORTS_CORE
HA_R2_BL_CREDITS_EMPTY_HI_R2_NCB UOPS_EXECUTED_PORT_DATA_PORTS
CPU_CLOCK_UNHALTED_THREAD_P UOPS_RETIRED_CORE_TOTAL_CYCLES
CPU_CLOCK_UNHALTED_THREAD_P_ANY LSD_CYCLES_4_UOPS
CPU_CLOCK_UNHALTED_REF_XCLK UOPS_EXECUTED_THREAD
CPU_CLOCK_UNHALTED_REF_XCLK_ANY UOPS_EXECUTED_USED_CYCLES
CPU_CLOCK_THREAD_UNHALTED _ONE_THREAD_ACTIVE UOPS_EXECUTED_STALL_CYCLES
CPU_CLOCK_UNHALTED_TOTAL_CYCLES UOPS_EXECUTED_TOTAL_CYCLES
ICACHE_MISSES UOPS_EXECUTED_CYCLES_GE_1_UOPS_EXEC
L2_RQSTS_RFO_MISS UOPS_EXECUTED_CYCLES_GE_2_UOPS_EXEC
L2_RQSTS_ALL_RFO UOPS_EXECUTED_CYCLES_GE_3_UOPS_EXEC
L2_RQSTS_CODE_RD_HIT UOPS_EXECUTED_CYCLES_GE_4_UOPS_EXEC
L2_RQSTS_CODE_RD_MISS UOPS_EXECUTED_CORE
UOPS_EXECUTED_PORT_DATA_PORTS UOPS_EXECUTED_CORE_USED_CYCLES
MEM_LOAD_UOPS_RETIRED_ALL_ALL UOPS_EXECUTED_CORE_STALL_CYCLES
UOPS_ISSUED_ANY UOPS_EXECUTED_CORE_TOTAL_CYCLES
UOPS_ISSUED_USED_CYCLES UOPS_EXECUTED_CORE_CYCLES_GE_1_UOPS_EXEC
UOPS_ISSUED_STALL_CYCLES UOPS_EXECUTED_CORE_CYCLES_GE_2_UOPS_EXEC
UOPS_ISSUED_TOTAL_CYCLES UOPS_EXECUTED_CORE_CYCLES_GE_3_UOPS_EXEC
UOPS_ISSUED_CORE_USED_CYCLES UOPS_EXECUTED_CORE_CYCLES_GE_4_UOPS_EXEC
UOPS_ISSUED_CORE_STALL_CYCLES UOPS_RETIRED_ALL
UOPS_ISSUED_CORE_TOTAL_CYCLES UOPS_RETIRED_CORE_ALL
IDQ_MITE_ALL_UOPS UOPS_RETIRED_RETIRE_SLOTS
IDQ_DSB_UOPS UOPS_RETIRED_CORE_RETIRE_SLOTS
IDQ_MS_UOPS UOPS_RETIRED_USED_CYCLES
IDQ_ALL_DSB_CYCLES_ANY_UOPS UOPS_RETIRED_STALL_CYCLES
IDQ_ALL_DSB_CYCLES_4_UOPS UOPS_RETIRED_TOTAL_CYCLES
IDQ_ALL_MITE_CYCLES_ANY_UOPS UOPS_RETIRED_CORE_USED_CYCLES
IDQ_UOPS_NOT_DELIVERED_CORE UOPS_RETIRED_CORE_STALL_CYCLES
CAS_COUNT_RD CAS_COUNT_WR

CAS_COUNT_ALL

85

4.3. GROUP 1: STUDY OF ADDITIVITY OF PMCS

Table 4.2: List of non-additive Likwid PMCs

Event Name Additivity Error (%)
UNCORE_CLOCK 16.98
CBOX_CLOCKTICKS 16.98
SBOX_CLOCKTICKS 17.08
WBOX_CLOCKTICKS 17.57
BBOX_CLOCKTICKS 16.98
PBOX_CLOCKTICKS 16.98
RBOX_CLOCKTICKS 16.98
QBOX_CLOCKTICKS 17.57
HA_R2_BL_CREDITS_EMPTY_LO_R2_NCB 45.27
HA_R2_BL_CREDITS_EMPTY_LO_R2_NCS 48.28
HA_R2_BL_CREDITS_EMPTY_HI_HA0 203.15
HA_R2_BL_CREDITS_EMPTY_HI_HA1 213.15
HA_R2_BL_CREDITS_EMPTY_HI_R2_NCS 250.56
OFFCORE_RESPONSE_0_DMND_DATA_RD_ANY 47.50
ICACHE_IFETCH_STALL 86.60
L2_RQSTS_RFO_HIT 27.44
ARITH_DIVIDER_UOPS 3075.23
IDQ_UOPS_NOT_DELIVERED_CYCLES_LE_1_ UOP_DELIV_CORE 163.64
IDQ_UOPS_NOT_DELIVERED_CYCLES_LE_2_ UOP_DELIV_CORE 89.16
L2_RQSTS_L2_PF_HIT 39.41
ICACHE_HIT 105.45
RXL_FLITS_G0_DATA 176.62
OFFCORE_REQUESTS_OUTSTANDING_ ALL_DATA_RD 33.76
OFFCORE_REQUESTS_ALL_DATA_RD 42.45
IDQ_MITE_UOPS 42.06
L2_RQSTS_ALL_DEMAND_DATA_RD 52.76
L2_TRANS_DEMAND_DATA_RD 24.29
L2_RQSTS_ALL_DEMAND_DATA_RD_MISS 29.14
L2_RQSTS_ALL_DEMAND_DATA_RD_HIT 35.09
L2_RQSTS_ALL_DEMAND_DATA_RD 39.43
L2_TRANS_DEMAND_DATA_RD 52.43
L2_RQSTS_ALL_DEMAND_DATA_RD_MISS 56.23
L2_RQSTS_ALL_DEMAND_DATA_RD_HIT 72.32
L2_RQSTS_ALL_DEMAND_DATA_RD 35.03
L2_TRANS_DEMAND_DATA_RD 75.24
L2_RQSTS_ALL_DEMAND_DATA_RD 80.33
RXL_FLITS_G2_NCB_DATA 100
RXL_FLITS_G2_NCB_NONDATA 100
TXL_FLITS_G0_DATA 100
TXL_FLITS_G1_DRS_DATA 100
TXL_FLITS_G1_DRS_NONDATA 100
TXL_FLITS_G2_NCB_DATA 100
LSD_UOPS 42

86

4.3. GROUP 1: STUDY OF ADDITIVITY OF PMCS

Additivity of PAPI PMCs

In this section, we determine the additivity of PAPI PMCs. We again execute

all the compound applications where each application is composed from two

base applications in our test suite (shown in Table 3.2).

The list of potentially additive PMCs is shown in Table 4.3. The list of

non-additive PMCs is shown in Table 4.4, which also reports the maximum

percentage error for each PMC.

It should be mentioned that some of these non-additive PMCs such as

PAPI_L1_ICM and PAPI_L2_ICM have been widely used in energy and

performance predictive models [46, 141, 51, 142, 143, 144]. These represent

L1 and L2 instruction cache misses.

Table 4.3: List of potentially additive PAPI PMCs

PAPI_L1_DCM PAPI_FUL_CCY PAPI_L2_DCW
PAPI_L2_DCM PAPI_BR_UCN PAPI_L3_DCW
PAPI_CA_SHR PAPI_BR_CN PAPI_L3_TCR
PAPI_CA_CLN PAPI_BR_TKN PAPI_L2_TCW
PAPI_CA_INV PAPI_BR_NTK PAPI_L3_TCW
PAPI_CA_ITV PAPI_BR_MSP PAPI_REF_CYC
PAPI_L1_STM PAPI_BR_PRC PAPI_L1_TCM
PAPI_L2_LDM PAPI_TOT_INS PAPI_L2_TCM
PAPI_L2_STM PAPI_L2_DCR PAPI_BR_INS
PAPI_PRF_DM PAPI_L3_DCR PAPI_RES_STL
PAPI_TOT_CYC PAPI_L2_DCA PAPI_L3_DCA
PAPI_L2_TCA PAPI_L2_TCR PAPI_L3_TCA

Core and Memory Pinning

Pinning is the process or binding an application to a specific core or memory

bank to improve its performance by increasing the percentage of local memory

accesses.

We ran two sets of experiments, one with the application pinned to the

cores and the other with the application pinned to cores and memory.

87

4.3. GROUP 1: STUDY OF ADDITIVITY OF PMCS

Table 4.4: List of non-additive PAPI PMCs

Event Name Additivity Error (%)
PAPI_CA_SNP 40.23
PAPI_TLB_DM 31.54
PAPI_TLB_IM 23.70
PAPI_STL_CCY 31.43
PAPI_LD_INS 32.06
PAPI_SR_INS 21.98
PAPI_LST_INS 45.87
PAPI_L1_ICM 37.28
PAPI_L2_ICM 37.50
PAPI_L2_ICH 107.12
PAPI_L2_ICA 30.65
PAPI_L3_ICA 30.2
PAPI_L2_ICR 30.65
PAPI_L3_TCM 14.54
PAPI_L3_LDM 74.68
PAPI_L1_LDM 200.82
PAPI_L3_ICR 19.48

While the percentage errors were reduced slightly when the application is

pinned to both the cores and the memory, we observed that memory pinning

has no effect on additive PMCs but, most importantly, non-additive PMCs re-

mained non-additive (within a tolerance of 5%).

4.3.6 Class B: Extended Study to Rank PMCs Using Addi-

tivity Test

We further conduct a detailed study of the additivity of PMCs offered by Likwid.

For the experimental results, we prepare a dataset consisting of 100 com-

pound applications composed of the base applications presented in Table 3.2.

No PMC is found to be additive within a specified tolerance of 5%. If we

increase the tolerance to 20%, 50 PMCs become additive. Increasing the tol-

erance to 30% makes 109 PMCs additive. We observe that a PMC can be

non-additive with an error as high as 4315% and there are many PMCs where

88

4.3. GROUP 1: STUDY OF ADDITIVITY OF PMCS

the error is over 100%.

4.3.7 Evolution of Additivity of PMCs from Single-core to

Multicore Architectures

To identify the cause of this non-additivity, we perform an experimental study

to observe the additivity of PMCs with different configurations of threads/cores

employed in an application.

We choose for this study three applications: 1). MKL DGEMM, 2). MKL

FFT and 3). naive matrix-vector (MV) multiplication. We perform additivity

test for the applications for four different core configurations (2-core, 8-core,

16-core, and 24-core). In the 2-core configuration, the application is pinned

to one core of each socket. In the 8-core configuration, the application is

pinned to four cores of each socket and so on. We design multiple compound

applications from the chosen set of problem sizes. For each application and

core configuration, we note the maximum percentage error for each PMC and

count the number of non-additive PMCs that exceed the input tolerance of 5%.

Figure 4.1 shows the increase in non-additivity of PMCs as the number of

cores is increased for DGEMM, FFT and naive MV. For DGEMM, 51 PMCs are

non-additive for 2-core configuration. The number increases to 126 for 24-core

configuration. For FFT, the number increases from 61 to 146 and for naive MV,

the number increases from 22 to 58 from 2-core to 24-core configurations. The

minimum number of non-additive PMCs is for the 2-core configuration for each

application.

Therefore, we conclude that the number of non-additive PMCs increases

with the increase in cores employed in an application execution because of the

two inherent characteristics of modern computing platforms 1) severe resource

sharing and 2) contention. Severe resource contention is due to tight integra-

tion of tens of cores organized in multiple sockets with multi-level cache hi-

erarchy and contending for shared on-chip resources such as last level cache

(LLC), interconnect (For example Intel’s Quick Path Interconnect, AMD’s Hyper

Transport), and DRAM controllers. However, the non-uniform memory access

(NUMA) where the time for memory access between a core and main memory

89

4.3. GROUP 1: STUDY OF ADDITIVITY OF PMCS

is not uniform and where main memory is distributed between locality domains

or groups called NUMA nodes. These two characteristics causes a lot of vari-

ations in the energy consumption profiles of the applications. The variations

have been a subject in the optimization of energy consumption in the recent

years and the non-additivity of performance events can explain the increasing

amount of variations in the profiles as the number of cores increase.

2 8 16 24
40

60

80

100

120

140

Cores

N
on

-A
dd

iti
ve

P
M

C
s

2 8 16 24
50

100

150

Cores

N
on

-A
dd

iti
ve

P
M

C
s

A B

2 8 16 24

20

40

60

Cores

N
on

-A
dd

iti
ve

P
M

C
s

C

Figure 4.1: Increase in number of non-additive PMCs with threads/cores used
in an application. (A), (B), and (C) shows non-additive PMCs for Intel MKL
DGEMM, Intel MKL FFT and naive matrix-vector multiplication.

4.3.8 Discussion

We first discuss some of the insights from our initial study of the additivity of

PMCs. From Table 4.1 and Table 4.2 showing potentially additive and non-

additive Likwid PMCs respectively, one can observe that out of a total of 151

90

4.3. GROUP 1: STUDY OF ADDITIVITY OF PMCS

PMCs, 43 PMCs are non-additive.

The event ARITH_DIVIDER_UOPS exhibits the highest maximum percent-

age error of about 3075%. This event belongs to the µOPS group of Likwid

PMCs responsible for gathering PMCs related to the instruction pipeline.

Several PMCs such as 1) HA_R2_BL_CREDITS_EMPTY_HI_HA0,

2) HA_R2_BL_CREDITS_EMPTY_HI_HA1, and 3)

HA_R2_BL_CREDITS_EMPTY_HI_R2_NCS show maximum percent-

age error of about 200%. These events specifically belong to the Home Agent

(HA) group of Likwid PMCs. HA is the central unit that is responsible for

providing PMCs from the protocol side of memory interactions.

There are several PMCs that show the maximum percentage error of about

100%. They are mainly from the QPI group of Likwid PMCs responsible for

packetizing requests from the caching agent on the way out to the system

interface.

Similarly, from Table 4.3 and Table 4.4 showing potentially additive and

non-additive PAPI PMCs respectively, 17 PMCs out of a total of 53 PMCs are

non-additive. One PMC, PAPI_L1_LDM, demonstrates the highest maximum

percentage error of about 200%. It represents L1 load misses. Another PMC,

PAPI_L2_ICH, demonstrates a maximum percentage error of over 100%. It

represents L2 instruction cache hits.

If we increase the tolerance to about 20%, then only 8 non-additive Likwid

PMCs will become potentially additive. For PAPI, only two non-additive PMCs

will become potentially additive, PAPI_L3_TCM and PAPI_L3_ICR. They rep-

resent L3 cache misses and L3 instruction cache reads respectively. Increas-

ing the tolerance to about 30% results in other 3 non-additive Likwid PMCs

and 5 non-additive PAPI PMCs becoming potentially additive.

Thus, one can see that there are still a large number of PMCs that are

non-additive even after increasing the tolerance to as high as 30%. Some of

these PMCs have been used as key predictor variables in energy predictive

models [43, 138, 139, 140, 44, 46, 141, 51, 142, 143, 144].

To summarize, our initial study in Class A suggest that the non-additive

PMCs that exceed a specified tolerance must be excluded from the list of

PMCs to be considered as predictor variables for energy predictive modeling,

91

4.4. GROUP 2: IMPROVING PREDICTION ACCURACY OF
PLATFORM-LEVEL ENERGY PREDICTIVE MODELS USING

CONSISTENCY TEST

because they can potentially damage the prediction accuracy of these models

due to their highly non-deterministic nature. Also, the list of potentially additive

PMCs must be further tested exhaustively for more diverse applications and

platforms to secure more confidence in their additivity.

A detailed study of additivity of PMCs shows that no PMCs are additive for

all the applications. Therefore, we conclude that all the PMCs fail the additivity

test with a specified tolerance of 5% on current multicore platforms.

We also discovered that the number of non-additive PMCs rises with an

increase in the number of cores employed in the application. We consider this

to be an inherent trait of modern multicore computing platforms because of

severe resource contention and non-uniform memory access (NUMA).

4.4 Group 2: Improving Prediction Accuracy of

Platform-Level Energy Predictive Models Us-

ing Consistency Test

In this section, we study the impact of the additivity of PMCs on the prediction

accuracy of state-of-the-art energy predictive models constructed using the

popular mainstream technique, i.e., linear regression (LR).

A LR model can be represented as Yi = β0 +
∑M

j=1 βjXij + εi, where i =

1, 2, ..., N represent the number of observations, and j = 1, 2, ...,M represent

the number of independent variables. In our case, Yi are dynamic energy

measurements obtained using HCLWattsUp, and Xij are the observed values

of the PMCs. ε is the error term or noise in measurement. We build a linear

model using regression technique by estimating the value of model intercept

(β0) and the model coefficients (β).

We now present the experiments in this group to study the energy predic-

tive models using linear regression.

92

4.4. GROUP 2: IMPROVING PREDICTION ACCURACY OF
PLATFORM-LEVEL ENERGY PREDICTIVE MODELS USING

CONSISTENCY TEST

4.4.1 Experiments and Analysis

We select six PMCs common to the state-of-the-art models [138, 43, 140, 87,

76, 145]. The PMCs ({X1, · · · , X6}) are listed in the Table 4.5. They belong

to the following dominant PMC groups: cache, branch instructions, micro-

operations (uops), floating-point instructions, and main memory accesses.

They fail the additivity test for an input tolerance of 5%. The PMC X6 is highly

additive compared to the rest.

Table 4.5: Correlation of PMCs with dynamic energy consumption (ED). (A)
List of selected PMCs for modelling with their additivity test errors (%). (B)
Correlation matrix showing positive correlations of dynamic energy with PMCs.
100% correlation is denoted by 1. X4, X5, and X6 are highly correlated with
ED.

Selected PMCs Additivity
Test Error(%)

X1: IDQ_MITE_UOPS 13
X2: IDQ_MS_UOPS 37
X3: ICACHE_64B_IFTAG_MISS 36
X4: ARITH_DIVIDER_COUNT 80
X5: L2_RQSTS_MISS 14
X6: UOPS_EXECUTED_PORT_PORT_6 10

ED X1 X2 X3 X4 X5 X6

ED 1 0.53 0.50 0.42 0.58 0.99 0.99
X1 0.53 1 0.41 0.25 0.39 0.45 0.44
X2 0.50 0.41 1 0.19 0.99 0.48 0.48
X3 0.42 0.25 0.19 1 0.21 0.41 0.40
X4 0.58 0.39 0.99 0.21 1 0.57 0.56
X5 0.99 0.45 0.48 0.41 0.57 1 0.99
X6 0.99 0.44 0.48 0.40 0.56 0.99 1

A B

Table 4.6: Linear predictive models (MA1-MG1) with intercepts and their min-
imum, average, and maximum prediction errors. Coefficients can be positive
or negative.

Model PMCs Intercept followed by Coefficients Percentage predic-
tion errors (min,
avg, max)

MA1 X1, X2, X3, X4, X5, X6 10.2, 3.06E-09, 1.95E-08, 3.30E-07, -1.02E-06, 6.18E-08, -9.39E-
11

(2.7, 32, 99.9)

MB1 X1, X2, X3, X5, X6 12.8, 3.68E-09, 2.26E-10, 3.43E-07, 7.40E-08, -4.763E-10 (2.5, 23.32, 80.42)
MC1 X1, X3, X5, X6 16.4, 3.71E-09, 3.34E-07, 7.45E-08, -4.87E-10 (2.5, 21.86, 76.9)
MD1 X1, X5, X6 29.9, 3.72E-09, 7.54E-08, -5.076E-10 (2.5, 21.78, 77.33)
ME1 X1, X6 130, 4.21E-09, 1.456E-09 (2.5, 18.01, 89.23)
MF1 X6 749, 1.53E-09 (2.5, 14.39, 34.64)
MG1 X4, X5, X6 492, 6.79E-08, 9.45E-08, -9.60E-10 (2.5, 23.46, 80)

We build three types of linear regression models as follows:

• Type 1: Models MA1-MG1 with no restrictions on intercepts and coeffi-

cients.

• Type 2: Models MA2-MG2 whose intercepts are forced to zero.

93

4.4. GROUP 2: IMPROVING PREDICTION ACCURACY OF
PLATFORM-LEVEL ENERGY PREDICTIVE MODELS USING

CONSISTENCY TEST

Table 4.7: Linear predictive models (MA2-MG2) with zero intercepts and their
minimum, average, and maximum prediction errors. Coefficients can be posi-
tive or negative.

Model PMCs Coefficients Percentage predic-
tion errors (min,
avg, max)

MA2 X1, X2, X3, X4, X5, X6 1.08E-09, 1.96E-08, 3.51E-07, -1.02E-06, 6.19E-08, -9.78E-11 (2.5, 32, 78.7)
MB2 X1, X2, X3, X5, X6 3.71E-09, 2.37E-10, 3.69E-07, 7.42E-08, -4.82E-10 (2.5, 23.32, 80.57)
MC2 X1, X3, X5, X6 3.75E-09, 3.66E-07, 7.48E-08, -4.95E-10 (2.5, 22.1, 77.5)
MD2 X1, X5, X6 3.80E-09, 7.61E-08, -5.27E-10 (2.5, 22.4, 78.5)
ME2 X1, X6 4.60E-09, 1.46E-09 (2.5, 18.01, 89.45)
MF2 X6 1.60E-09 (3.0, 68.53, 90.53)
MG2 X4, X5, X6 1.34E-07, 1.22E-07, -1.65E-09 (2.5, 47.5, 111.22)

Table 4.8: Linear predictive models (MA3-MG3) with zero intercepts. Coeffi-
cients cannot be negative. The minimum, average, and maximum prediction
errors of IntelRAPL and the linear predictive models.

Model PMCs Coefficients Percentage predic-
tion errors (min,
avg, max)

MA3 X1, X2, X3, X4, X5, X6 3.83E-09, 3.67E-10, 5.30E-07, 0, 5.56E-08, 0 (6.6, 31.2, 61.9)
MB3 X1, X2, X3, X5, X6 3.83E-09, 3.67E-10, 5.30E-07, 0, 5.56E-08 (6.6, 31.2, 61.9)
MC3 X1, X3, X5, X6 3.75E-09, 5.34E-07, 5.58E-08, 0 (2.5, 25.3, 62.1)
MD3 X1, X5, X6 4.00E-09, 5.59E-08, 0 (2.5, 23.86, 100.3)
ME3 X1, X6 4.60E-09, 1.46E-09 (2.5, 18.01, 89.45)
MF3 X6 1.60E-09 (2.5, 68.5, 90.5)
MG3 X4, X5, X6 1.72E-07, 5.86E-08, 0 (2.5, 50, 77.9)
IntelRAPL (4.1, 30.6, 58.9)

• Type 3: Models MA3-MG3 whose intercepts are forced to zero and

whose coefficients cannot be negative.

Within each type t,MAt employs all the PMCs as predictor variables. MBt

is based on five PMCs with the least additive PMC (X4) removed. MCt uses

four PMCs with two most non-additive PMCs (X2, X4) removed and so on until

MFt containing only the most additive PMC (X6). MGt uses three PMCs

(X4, X5, X6) with the highest correlation with dynamic energy consumption.

For constructing all the models, we use a dataset of 277 points where

each point contains dynamic energy consumption and the PMC counts for the

execution of one base application from Table 3.2 with some particular input.

For testing the prediction accuracy of the models, we construct a test dataset

of 50 different compound applications. We used this division (227 for training,

50 for testing) based on best practices and experts’ opinions in this domain.

Table 4.6 summarizes the type 1 models. Following are the salient obser-

vations:

94

4.4. GROUP 2: IMPROVING PREDICTION ACCURACY OF
PLATFORM-LEVEL ENERGY PREDICTIVE MODELS USING

CONSISTENCY TEST

• The model intercepts are significant. In our theory of energy of com-

puting where we consider modelling of dynamic energy consumption,

the intercepts are not present since they have no real physical meaning.

Consider the case where no application is executed. The values of the

PMCs will be zero and therefore the models must output the dynamic

energy consumption to be zero. The models, however, output the values

of their intercepts as the dynamic energy consumption. This violates the

energy conservation property in the theory.

• MA1 has negative coefficients for PMCs, X4 and X6. Models MB1-

MD1 have negative coefficients for PMC, X6. The negative coefficients

in these models can give rise to negative predictions for applications

where the counts for X4 and X6 are higher than the other PMCs. We

illustrate this case by designing a microbenchmark that stresses specif-

ically hardware components resulting in large counts for the PMCs with

the negative coefficients. Since, in our case, X4 and X6 count the

division and floating-point instructions, our microbenchmark is a sim-

ple assembly language program that performs floating-point division

operations in a loop. When run for forty seconds, the PMC counts

for this application on our platform were: X1=7022011, X2=623142,

X3=121489, X4=5101219180, X5=33210, and X6=186971207082. The

energy consumption predictions for this application from our four models

{A1, B1, C1, D1} are {−5210.52,−76.23,−74.59,−64.98} which violate

the energy conservation law.

• Since the predictor variables have a high positive correlation with energy

consumption, their coefficients should exhibit the same relationship. The

coefficients, however, have different signs for different models. Consider,

for example, X4 in MA1 and MC1. While it has a positive coefficient of

A1, it has a negative coefficient of MC1. Similarly, X6 in A1 and B1

has negative coefficient, whereas in MF1 it has a positive coefficient.

We have found that the research works that propose linear models us-

ing these PMCs do not contain any sanity check for these coefficients.

Therefore, we believe that using them in models without understanding

95

4.4. GROUP 2: IMPROVING PREDICTION ACCURACY OF
PLATFORM-LEVEL ENERGY PREDICTIVE MODELS USING

CONSISTENCY TEST

the true meaning or the nature of their relationship with dynamic energy

consumption can lead to serious inaccuracy.

The type 2 models are built using specialized linear regression, which

forces the intercept to be zero. Table 4.7 contains their summary. All the

models excepting ME2 and MF2 contain negative coefficients and therefore

present the same issues that violate the energy conservation law.

The type 3 models are built using penalized linear regression using the

R programming interface that forces the coefficients to be non-negative. All

the models of this type have zero intercepts and are summarized in Table

4.8. They incorporate basic sanity checks that disallow violations of energy

conservation property.

We will now focus on the minimum, average, and maximum prediction er-

rors of type 3 models. They are (6.6%, 31.2%, 61.9%) for MA3. Since the

coefficients are constrained to be non-negative, X6 ends up having a zero co-

efficient. We remove the PMC with the next highest non-additivity (X4) and

construct MB3 based on the remaining five PMCs. In this model, X5 has a

zero coefficient. Its prediction errors are (6.6%, 31.2%, 61.9%). We then re-

move the PMC with the next highest non-additivity (X2) from the list of four

and build MC3 based on the remaining PMCs. Its prediction errors are (2.5%,

25.3%, 62.1%). Finally, we build MF3 with just one most additive PMC (X6).

Its prediction errors are (2.5%, 68.5%, 90.5%). The prediction errors of RAPL

are (4.1%, 30.6%, 58.9%). The prediction errors of MG3 are (2.5%, 50%,

77.9%).

We derive the following conclusions:

• As we remove non-additive PMCs one by one, the average prediction ac-

curacy of the models improves significantly. ME3 with two most additive

PMCs is the best in terms of average prediction accuracy. We, therefore,

conclude that employing non-additive PMCs can significantly impair the

prediction accuracy of models and that inclusion of highly additive PMCs

improves the prediction accuracy of models drastically.

• We highlight two examples demonstrating the dangers of pure fitting ex-

ercise (for example: applying linear regression) without understanding

96

4.4. GROUP 2: IMPROVING PREDICTION ACCURACY OF
PLATFORM-LEVEL ENERGY PREDICTIVE MODELS USING

CONSISTENCY TEST

the true physical significance of a predictor variable.

– The PMC X6, which has the highest significance in terms of contri-

bution to dynamic energy consumption (highest additivity), ends up

having a zero coefficient inMA3, MC3, MD3, andMG3. MD3 has

only two PMCs, X1 and X5, effectively. The linear fitting method

picks X5 instead of X6 thereby impairing the prediction accuracy

of MD3 (and also MG3). This is because X5 and X6 have a high

positive correlation between themselves but the fitting method does

not know that X6 is highly additive.

– MF3 containing one PMC with the highest additivity, X6, has the

lowest prediction accuracy. The linear fitting method is unable to

find a good fit.

• The average prediction accuracy of RAPL is equal to that of the MA3

and MB3, which contains the highest number of non-additive PMCs. If

the model of RAPL is disclosed, one can check how much its prediction

accuracy can be improved by removing non-additive PMCs and including

highly additive PMCs.

• MG3 fares worse than RAPL and MA3 even though it contains PMCs

that are highly correlated with dynamic energy consumption. ME3 with

two most additive PMCs has better average prediction accuracy than

MG3, which demonstrates that additivity is a more important criterion

than correlation.

Figure 4.2 presents the percentage deviations in dynamic energy con-

sumption predictions by type 3 models (Table 4.8) from the system-level phys-

ical power measurements obtained using HCLWattsUp (using WattsUp Pro

power meters) for different compound applications. RAPL, MA3, and MG3

exhibit higher average percentage deviations than the best model,ME3. While

RAPL distribution is normal, MA3 and MG3 demonstrate non-normality sug-

gesting systemic (not fully random) deviations from the average.

97

4.4. GROUP 2: IMPROVING PREDICTION ACCURACY OF
PLATFORM-LEVEL ENERGY PREDICTIVE MODELS USING

CONSISTENCY TEST

Figure 4.2: Percentage deviations of the type 3 models shown in Table 4.8
from the system-level physical power measurements provided by power me-
ters (HCLWattsUp). The dotted lines represent the averages.

98

4.5. GROUP 3: IMPACT OF CONSISTENCY TEST ON THE ACCURACY
OF APPLICATION-SPECIFIC ENERGY PREDICTIVE MODELS

4.4.2 Discussion

This section presents our salient observations from the analysis of models as

below:

• We observe that, in general, the prediction accuracy of the models im-

proves as we remove one by one the non-additive PMCs employed in

them.

• The linear regression model ME3 with two highly additive PMCs per-

forms best in terms of average prediction accuracy with an error of 18%.

• The highest average prediction errors are exhibited by models employing

one PMC as a predictor variable. This suggests that it is less likely for

a single PMC to capture all the possible sources of energy consumption

on a modern multicore CPU platform.

4.5 Group 3: Impact of Consistency Test on the

Accuracy of Application-Specific Energy Pre-

dictive Models

In this section, we study the accuracy limits of application-specific energy pre-

dictive models constructed using linear regression. The application-specific

models are commonly used computing setups with homogeneous servers ex-

ecuting a limited set of applications to predict the dynamic energy consump-

tion.

We choose the single-socket Intel Skylake server (Table 3.1) for the exper-

iments. A total of 323 PMCs are exposed using Likwid tool on this platform. In

order to collect all the PMCs, an application has to be run 99 times.

There is no PMC which is additive within a tolerance of 5% if we consider

the large dataset of compound applications composed for the test suite of

applications in Table 3.2. However, we discover that many PMCs are additive

(within 5%) for a small subset of applications.

99

4.5. GROUP 3: IMPACT OF CONSISTENCY TEST ON THE ACCURACY
OF APPLICATION-SPECIFIC ENERGY PREDICTIVE MODELS

We select two such applications, MKL FFT and MKL DGEMM. We now

describe below the process of selection of PMCs for the applications:

• From the literature (section 2.3.5) and based on the nature of the ap-

plications, we find that the PMCs that mainly reflect the hardware and

software activities and that contribute towards the dynamic energy con-

sumption are from the following dominant PMC groups: cache, branch

instructions, micro-operations (µops), floating-point instructions, and

main memory accesses. We call the PMCs in these groups as prime

PMCs. For our platform (Table 3.1), prime PMCs are 122.

• We make sure that all the prime PMCs are deterministic and repro-

ducible by executing the DGEMM and FFT applications with the same

problem sizes for a number of times. We find that the PMC counts for

successive runs of applications are within an accuracy of 99.99%.

• We study the additivity of the prime PMCs. We build a dataset of 50

base applications using different problem sizes for DGEMM and FFT.

The range of problem sizes for DGEMM is 6500×6500 to 20000×20000,

and for FFT is 22400× 22400 to 29000× 29000. We select this range be-

cause of reasonable execution time (> 3 seconds) of the applications on

our platform. For each application in a dataset, we measure the follow-

ing: PMCs, dynamic energy consumption, and execution time. We then

build a dataset of 30 compound applications from these base applica-

tions. The additivity test based on the two datasets reveals that there

are a number of PMCs that are additive for both the applications.

• We select nine highly additive PMCs (with additivity test errors of less

than 1%) for both the applications. These are labeled as A1, A2, A3, ...,

A9.

• We then select nine non-additive PMCs but which have been employed

as predictor variables in notable energy predictive models in the litera-

ture (Section 2.3.5). We label them, NA1, NA2, NA3, ..., NA9. The

set of additive PMCs is denoted by PA and non-additive PMCs by PNA.

100

4.5. GROUP 3: IMPACT OF CONSISTENCY TEST ON THE ACCURACY
OF APPLICATION-SPECIFIC ENERGY PREDICTIVE MODELS

• Finally, we determine the correlations of the PMCs with dynamic energy

consumption, which are given in Table F.1.

Table 4.9: Selected additive and non-additive PMCs and their correlation with
dynamic energy consumption. 0 to 1 represents positive correlation of 0% to
100%.

Additive PMCs Correlation
A1 UOPS_RETIRED_CYCLES_GE_4_UOPS_EXEC 0.992
A2 FP_ARITH_INST_RETIRED_DOUBLE 0.993
A3 MEM_INST_RETIRED_ALL_STORES 0.870
A4 UOPS_EXECUTED_CORE 0.993
A5 UOPS_DISPATCHED_PORT_PORT_4 0.870
A6 IDQ_DSB_CYCLES_6_UOPS 0.981
A7 IDQ_ALL_DSB_CYCLES_5_UOPS 0.972
A8 IDQ_ALL_CYCLES_6_UOPS 0.993
A9 MEM_LOAD_RETIRED_L3_MISS -0.112

Non-additive PMCs
NA1 ICACHE_64B_IFTAG_MISS 0.960
NA2 CPU_CLOCK_THREAD_UNHALTED 0.600
NA3 BR_MISP_RETIRED_ALL_BRANCHES 0.992
NA4 MEM_LOAD_L3_HIT_RETIRED_XSNP_MISS -0.020
NA5 FRONTEND_RETIRED_L2_MISS 0.806
NA6 ITLB_MISSES_STLB_HIT 0.111
NA7 L2_TRANS_CODE_RD 0.860
NA8 IDQ_MS_UOPS 0.99
NA9 ARITH_DIVIDER_COUNT 0.986

We build a dataset containing 401 workload sizes for DGEMM ranging from

6400× 6400 to 38400× 38400. We also build a dataset for FFT containing 300

workload sizes ranging from 22400×22400 to 41536×41536. Both ranges use

a constant step size of 64. We collect the dynamic energy consumption using

HCLWattsUP API and the selected PMCs (Table F.1) using Likwid tool for each

application. The dataset is further divided for two subsets, one for training and

the other for testing of models. 300 and 101 points are used for the training

and testing of DGEMM models, respectively. Furthermore, the training and

testing subsets for FFT contain 225 and 75 points, respectively.

101

4.5. GROUP 3: IMPACT OF CONSISTENCY TEST ON THE ACCURACY
OF APPLICATION-SPECIFIC ENERGY PREDICTIVE MODELS

We build four models, {DGEMM-A, DGEMM-NA, FFT-A, FFT-NA}. The

models {DGEMM-A, FFT-A} are trained using PMCs belonging to PA and the

models {DGEMM-NA, FFT-NA} are trained using PMCs belonging to PNA.

We build an extended dataset containing 701 points that combine the

datasets for DGEMM and FFT. We collect the dynamic energy consumption

using HCLWattsUP API and the selected PMCs (Table F.1) using Likwid tool

for each application. The combined dataset is also divided into training and

testing subsets. We use 551 points to train and 150 points to test the models.

Using the sets of additive (PA) and non-additive (PNA) PMCs, we build two

linear models, {M-A, M-NA}.

Table 4.10a show the percentage prediction errors obtained from models.

One can see that the models based on PA have better average prediction

accuracy than the models based on PNA.

DGEMM-A, FFT-A, and M-A yield 1.3×, 2.5×, and 2.4× improvement in

average prediction accuracy in comparison with DGEMM-NA, FFT-NA, NA,

respectively.

Models constructed for single applications, {DGEMM-A, FFT-A}, exhibit

better average prediction accuracy than models for the combined dataset of

the two applications. This suggests that a specific set of carefully selected

PMCs may yield a more accurate application-specific model.

Table 4.10: Prediction accuracies of application-specific models. (a) Energy
predictive models using nine PMCs. (b) Energy predictive models using four
high positively-correlated PMCs.

Model PMCs Prediction Errors (%)
[Min, Avg, Max]

Model PMCs Prediction Errors (%)
[Min, Avg, Max]

DGEMM-A PA (0.094, 22.62, 125.48) DGEMM-A4 PA4 (0.004, 16.12, 87.25)
DGEMM-NA PNA (0.218, 31.23, 173.9) DGEMM-NA4 PNA4 (0.091, 33.61, 212.3)
FFT-A PA (0.447, 36.31, 182.2) FFT-A4 PA4 (0.042, 25.12, 190.15)
FFT-NA PNA (3.510, 92.68, 397.2) FFT-NA4 PNA4 (5.12, 98.01, 450.2)
M-A PA (0.005, 35.32, 225.5) M-A4 PA4 (0.024, 25.12, 87.25)
M-NA PNA (0.449, 85.61, 4039) M-NA4 PNA4 (0.449, 85.61, 4039)

(a) (b)

102

4.5. GROUP 3: IMPACT OF CONSISTENCY TEST ON THE ACCURACY
OF APPLICATION-SPECIFIC ENERGY PREDICTIVE MODELS

4.5.1 Impact of Additivity of PMCs and Correlation with En-

ergy on the Accuracy of Energy Predictive Models

Fast construction of accurate online energy consumption predictive models is

crucial for real-time systems that require quick reading of the application’s en-

ergy consumption. Since only 4 PMCs can be collected in a single application

run on our platform, the selection of such a reliable subset is crucial to the

prediction accuracy of online energy models.

We use PA and PNA (Table F.1) to build two sets of four most energy cor-

related PMCs. The first set PA4, {A1, A2, A4, A8}, is constructed using PA

and the second set PNA4, {NA1, NA3, NA8, NA9}, using PNA.

We build six linear models, {DGEMM-A4, DGEMM-NA4, FFT-A4, FFT-NA4,

M-A4, M-NA4}. The models {DGEMM-A4, FFT-A4, M-A4} are trained using

PMCs belonging to PA4 and the models {DGEMM-NA4, FFT-NA4, M-NA4}

are trained using PMCs belonging to PNA4.

Table 4.10b shows the prediction error percentages of the models. We ob-

serve that models based on PNA4 built using highly correlated but non-additive

PMCs do not demonstrate any improvement in average prediction accuracy

compared to models PNA based on nine non-additive PMCs. However, the

average prediction accuracy of the models based on PA4 having four highly

energy correlated and additive PMCs is significantly better than models based

on PA with nine additive PMCs. Model DGEMM-A4 has the least average

prediction error of 16%.

4.5.2 Study to Explore Accuracy Limits for PMC-based

Application-Specific Models

In this section, we present a study to explore how accurate a PMC-based

application-specific model can be for our platform.

We find that all the application-specific models studied so far and with

less than 4 PMCs as predictor variables demonstrate poor prediction accu-

racy compared to models using PA4. Therefore, we build four sets (set A, set

B, set C, set D) of models each based on more than 4 PMCs and contain-

103

4.5. GROUP 3: IMPACT OF CONSISTENCY TEST ON THE ACCURACY
OF APPLICATION-SPECIFIC ENERGY PREDICTIVE MODELS

ing an increasing number of highly positively correlated PMCs with dynamic

energy consumption from the set of most additive PMCs, PA (Table F.1). Set

A contains models for DGEMM and FFT using the top five highly correlated

PMCs, set B contains models with 6 most highly correlated PMCs, and so on

for set D with models based on 8 highly correlated PMCs. The models in each

set are given below:

• set A: {DGEMM-PA5, FFT-PA5} employ A1, A2, A4, A6, and A8 as pre-

dictor variables for DGEMM and FFT, respectively.

• set B: {DGEMM-PA6, FFT-PA6} employ A1, A2, A4, A6, A7, and A8 as

predictor variables for DGEMM and FFT, respectively.

• set C: {DGEMM-PA7, FFT-PA7} employ A1, A2, A3, A4, A6, A7, and A8

as predictor variables for DGEMM and FFT, respectively.

• set D: {DGEMM-PA8, FFT-PA8} employ A1, A2, A3, A4, A5, A6, A7, and

A8 as predictor variables for DGEMM and FFT, respectively.

Table 4.11 and 4.12 shows the minimum, average, and maximum percent-

age errors for the models for DGEMM and FFT, respectively. Figure 4.3(a)

and 4.3(b) show the prediction error distribution for the models for DGEMM

and FFT applications for our test data-set (containing 101 and 75 data points),

respectively.

The results show that the prediction errors are the least for the model

with five PMCs for DGEMM (13.41%) and the model with six PMCs for FFT

(19.21%).

Table 4.11: Accuracy of application-specific energy predictive models for
DGEMM employing 5, 6, 7, 8 most positively energy correlated and highly
additive PMCs

Model Prediction Errors (%) [Min, Avg, Max]
DGEMM-PA5 (0.94, 13.41, 119.43)
DGEMM-PA6 (0.32, 16.65, 123.16)
DGEMM-PA7 (0.17, 19.17, 142.32)
DGEMM-PA8 (0.03, 21.18, 126.83)

104

4.5. GROUP 3: IMPACT OF CONSISTENCY TEST ON THE ACCURACY
OF APPLICATION-SPECIFIC ENERGY PREDICTIVE MODELS

(a)

(b)

Figure 4.3: Percentage deviations of the application-specific models shown in
Table 4.10, 4.11 and 4.12 from the system-level physical power measurements
provided by power meters (HCLWattsUp) for (a). DGEMM and (b). FFT.

105

4.5. GROUP 3: IMPACT OF CONSISTENCY TEST ON THE ACCURACY
OF APPLICATION-SPECIFIC ENERGY PREDICTIVE MODELS

Table 4.12: Accuracy of application-specific energy predictive models for FFT
employing 5, 6, 7, and 8 PMCs that are most positively correlated with energy
and highly additive.

Model Prediction Errors (%) [Min, Avg, Max]
FFT-PA5 (0.42, 22.41, 82.36)
FFT-PA6 (0.62, 19.21, 85.49)
FFT-PA7 (0.23, 27.31, 136.16)
FFT-PA8 (0.48, 29.62, 130.72)

4.5.3 Discussion

Following are the salient observations from the results:

• High positive correlation of the model variables with dynamic energy con-

sumption alone is not sufficient to provide good average prediction ac-

curacy but the model variables must also satisfy the properties of the

consistency test that takes into account the physical significance of the

model variables originating from the conservation of energy of comput-

ing, which is the manifestation of the fundamental physical law of energy

conservation.

• For our experiments, the training data set is constructed by executing

the DGEMM and FFT with a constant increment of workload sizes us-

ing a fixed step size of 64. Although, the generation of training data

is a tedious task. However, once a model with the desired accuracy

is constructed, it represents the relationship of a specific combination

of PMCs and understands the underlying pattern with dynamic energy

consumption. Therefore, the model can be used to predict the energy

consumption for any workload size for an application or a set of applica-

tions.

• In general, the average prediction accuracy for single application models

is better than that for models using the combined dataset for two applica-

tions. This suggests that a specific set of carefully selected PMCs may

yield a more accurate application-specific model. However, since the

number of additive PMCs for every application differs, the set of PMCs

106

4.6. GROUP 4: STUDY OF DYNAMIC ENERGY OPTIMIZATION USING
INTEL RAPL AND SYSTEM-LEVEL PHYSICAL MEASUREMENTS

used as predictor variables for accurate energy predictive modelling may

change for each application.

• According to our experimental results, the best PMC based linear en-

ergy predictive models for DGEMM and FFT applications have a predic-

tion error of 13.41% and 19.21%, respectively. Our analysis of PMCs on

modern computing platforms shows that all they are supposed to be ad-

ditive by intuition and definition. Our theory of energy predictive models

for computing (Section 4.1) proves that a model employing only addi-

tive predictor variables must be linear. Therefore, as we employ in the

studied linear models only additive and highly correlated PMCs as pre-

dictor variables, using any other set of PMCs or non-linear models would

not further improve prediction accuracy. To obtain a model with an even

better prediction accuracy, one has to explore the use of non-additive

model variables, other than PMCs, such as high-level utilization metrics

that represent all the energy-consuming activities of the applications ex-

ecuting on a platform, and employ them in non-linear models.

• Since the most accurate linear models for DGEMM and FFT applications

employ five and six PMCs as predictor variables, at least six hardware

registers must be dedicated to storing the PMCs so that the models can

be employed online. Currently, 3-4 hardware registers are dedicated to

storing PMCs during an application run on our experimental platforms.

4.6 Group 4: Study of Dynamic Energy Optimiza-

tion using Intel RAPL and System-level Phys-

ical Measurements

In this section, we demonstrate that using inaccurate energy measuring tools

in energy optimization methods may lead to significant energy losses.

We explain the experimental observations that lead us to investigate if in-

accurate energy measurements using Intel RAPL can affect application-level

107

4.6. GROUP 4: STUDY OF DYNAMIC ENERGY OPTIMIZATION USING
INTEL RAPL AND SYSTEM-LEVEL PHYSICAL MEASUREMENTS

energy optimizations in Appendix H

We study optimization of a parallel matrix-matrix multiplication application

for dynamic energy using the most accurate PMC based linear energy pre-

dictive model, LR MM (constructed based on the theory of energy predictive

models for computing) and two measurement tools, Intel RAPL [30] which is

a popular mainstream tool and system-level physical power measurements

using power meters (HCLWattsUp [132]) which is the ground truth.

For this purpose, we employ a data-parallel application that uses Intel

MKL DGEMM as a building block. The experimental platform consists of two

servers, HCLServer1 (Table 3.1) and HCLServer2 (Table 3.1). To find the par-

titioning of matrices between the servers that minimizes the dynamic energy

consumption, we use a model-based data partitioning algorithm, which takes

as input dynamic energy functional models of the servers. We compare the to-

tal dynamic energy consumptions of the solutions returned when the input dy-

namic energy models of the servers are built using LR MM, IntelRAPL [30], and

system-level physical power measurements using power meters (HCLWattsUp

[132]. We follow the same strict experimental methodology as in the previous

experimental setup to make sure that our experimental results are reliable.

The parallel application computes a matrix product of two dense square

matrices A and B of sizes N × N and is executed using two processors,

HCLServer1 and HCLServer2. The matrix A is partitioned between the pro-

cessors as A1 and A2 of sizes M ×N and K ×N where M +K = N . Matrix

B is replicated at both the processors. Processor HCLServer1 computes the

product of matrices A1 and B and processor HCLServer2 computes the prod-

uct of matrices A2 and B. There are no communications involved.

The decomposition of the matrix A is computed using a model-based data

partitioning algorithm. The inputs to the algorithm are the number of rows of

the matrix A, N , and the dynamic energy consumption functions of the pro-

cessors, {E1, E2}. The output is the partitioning of the rows, (M,K). The

discrete dynamic energy consumption function of processor Pi is given by

Ei = {ei(x1, y1), ..., ei(xm, ym)} where ei(x, y) represents the dynamic energy

consumption during the matrix multiplication of two matrices of sizes x × y

and y × y by the processor i. Figures 4.4a–d show the discrete dynamic en-

108

4.6. GROUP 4: STUDY OF DYNAMIC ENERGY OPTIMIZATION USING
INTEL RAPL AND SYSTEM-LEVEL PHYSICAL MEASUREMENTS

ergy consumption functions of IntelRAPL, LR MM, and HCLWattsUp for the

processors, HCLServer1 and HCLServer2. The dynamic energy profiles are

for four problem sizes 14336, 14848, 15360, and 16384. For HCLServer1, the

dimension x ranges from 512 to y/2 in increments of 512. For HCLServer2,

the dimension x ranges from y − 512 to y/2 in decrements of 512.

(M,K) = argmin
M∈(512,N/2),

K∈(N−512,N/2),
M+K=N

(e1(M,N) + e2(K,N))

(a) N = 14336 (b) N = 14848

(c) N = 15360 (d) N = 16384

Figure 4.4: Dynamic energy consumption of Intel MKL DGEMM application
multiplying two matrices of sizes: M × N and N × N on HCLServer1, and
K ×N and N ×N on HCLServer2. M +K = N .

The main steps of the data partitioning algorithm are as follows:

1. Plane intersection of dynamic energy functions: Dynamic energy

109

4.7. SUMMARY

consumption functions {E1, E2} are cut by the plane y = N producing two

curves that represent the dynamic energy consumption functions against x

given y is equal to N .

2. Determine M and K:

We use four workload sizes {14336, 14848, 15360, 16384} in our test data.

For each workload size, we determine the workload distribution using the data

partitioning algorithm employing a model based on LR MM and IntelRAPL. We

execute the parallel application using this workload distribution and determine

its dynamic energy consumption. We represent it as elrmm and erapl. We

obtain the workload distribution using the data partitioning algorithm employing

a model based on HCLWattsUp. We execute the parallel application using

this workload distribution and determine its dynamic energy consumption. We

represent it as ehclwattsup. We calculate the percentage loss of dynamic energy

consumption provided by HCLWattsUp compared to LR MM and IntelRAPL.

Losses for the four workload sizes for LR MM and IntelRAPL are {1, 3, 10, 16}
and {54, 37, 31, 84}, respectively.

RAPL is shown to exhibit good prediction accuracy for applications employ-

ing decision variables such as dynamic voltage and frequency scaling (DVFS)

[34] and the number of application-level threads [35] but keeping the workload

size fixed. However, Fahad et al. [36] demonstrate that RAPL shows poor

correlation with real measurements if the workload size is varied and all the

other parameters are fixed. We validate this finding here but most importantly

show that employing RAPL in energy optimization methods where the decision

variable is workload distribution, leads to significant energy losses.

4.7 Summary

In this chapter, we proposed a novel selection criterion for PMCs called addi-

tivity, which can be used to determine the subset of PMCs that can potentially

be considered for reliable energy predictive modeling. It is based on the exper-

imental observation that the energy consumption of a serial execution of two

applications is the sum of energy consumptions observed for the individual

110

4.7. SUMMARY

execution of each application. A linear predictive energy model is consistent

if and only if its predictor variables are additive in the sense that the vector of

predictor variables for a serial execution of two applications is the sum of vec-

tors for the individual execution of each application. Furthermore, the model

must have non-negative coefficients and zero intercept.

We studied the additivity of PMCs offered by two popular tools, Likwid

and PAPI, using a detailed statistical experimental methodology on a modern

Intel Haswell multicore server CPU. We showed that many PMCs in Likwid and

PAPI are non-additive and that some of these PMCs are key predictor variables

in energy predictive models thereby bringing into question the reliability and

reported prediction accuracy of these models. We showed that a PMC can be

non-additive with error as high as 3075% and there are many PMCs where the

error is over 100%.

We discovered that the number of non-additive PMCs rises with an in-

crease in the number of cores employed in the application. We consider this

to be an inherent trait of modern multicore computing platforms because of

severe resource contention and non-uniform memory access (NUMA).

We summarized the assumptions behind the existing models and used a

model-theoretic approach to formulate their assumed properties in a mathe-

matical form. We extended the formalism by adding properties, heretofore

unconsidered, that are basic implications of the universal energy conservation

law. The extended formalism forms our theory of energy of computing. We

term an energy predictive model satisfying all the properties of the extended

model a consistent energy model. Using the theory, we proved that a consis-

tent energy predictive model is linear if and only if its each PMC variable is

additive in the sense that the PMC for a serial execution of two applications is

the sum of PMCs for the individual execution of each application. The basic

practical implications of the theory for improving the prediction accuracy of lin-

ear energy predictive models are unified in a consistency test, which contains

a suite of properties that include determinism, reproducibility, and additivity to

select model variables and constraints for model coefficients.

We applied the practical implications of our theory to improve the predic-

tion accuracy of the state-of-the-art energy predictive models. We studied

111

4.7. SUMMARY

the additivity of PMCs on a modern Intel platform. We showed that a PMC

can be non-additive with error as high as 3075% and there are many PMCs

where the error is over 100%. We discovered that the number of non-additive

PMCs rises with an increase in the number of cores employed in the applica-

tion. We consider this to be an inherent trait of modern multicore computing

platforms because of severe resource contention and non-uniform memory

access (NUMA).

We demonstrated how the accuracy of energy predictive models built us-

ing linear regression can be improved by selecting PMCs based on a property

of additivity. We selected six PMCs which are common in the state-of-the-art

energy predictive models and which are positively correlated with dynamic en-

ergy consumption. We constructed seven linear regression models with the

PMCs as predictor variables and that pass the constraints. We demonstrated

that the prediction accuracy of the models improves as we removed one by

one from them highly non-additive PMCs. We also highlighted the drawbacks

of pure fitting exercise (for example: applying linear regression) without under-

standing the true physical significance of a predictor variable. We showed that

linear regression methods select PMCs based on high positive correlation with

dynamic energy consumption and ignore PMCs that have a high significance

in terms of contribution to dynamic energy consumption (due to high additivity)

thereby impairing the prediction accuracy of the models.

We demonstrated that high positive correlation of the model variables with

dynamic energy consumption alone is not sufficient to provide good prediction

accuracy for a model but the model variables must also satisfy the proper-

ties of the consistency test that take into account the physical significance of

the model variables originating from the conservation of energy of computing,

which is the manifestation of the fundamental physical law of energy conser-

vation.

We explored the construction of most accurate PMC-based application-

specific models on our platform. The results show that the prediction errors

are the least for the model with five PMCs for DGEMM (13.41%) and the model

with six PMCs for FFT (19.21%). Since the most accurate models employ five

and six PMCs as predictor variables, at least six hardware registers must be

112

4.7. SUMMARY

dedicated to storing the PMCs so that the models can be employed online.

Currently, 3-4 hardware registers are dedicated to storing PMCs during an ap-

plication run on our experimental platforms thereby hindering the employment

of accurate online energy predictive models.

We studied the prediction accuracy of platform-level and socket-level en-

ergy predictive models for data-parallel applications executing on a multi-

socket multicore CPU platform where the sockets are independently pow-

ered. The study demonstrates that socket-level models employing socket-level

PMCs, which represent the resource utilization of individually powered com-

ponents, yield a more accurate energy predictive model.

Finally, we studied the optimization of a parallel matrix-matrix multiplication

application for dynamic energy using two measurement tools, IntelRAPL [30],

which is a popular mainstream tool, and power meters (HCLWattsUp [132])

providing accurate system-level physical power measurements. We demon-

strated that a significant amount of energy (up to 84% for applications used

in the experiments) is lost by using IntelRAPL most likely because it does not

take into account the properties of the theory of energy predictive models for

computing (we found no explicit evidence that it does).

113

Chapter 5

A Comparative Study of

Techniques for Energy Predictive

Modelling using Performance

Monitoring Counters on Modern

Multicore CPUs

A theory of energy predictive models for computing has progressively matured

in the previous chapters starting with proposal of a criterion for selection of

PMCs followed by a formal description of the theory and its practical implica-

tions in Chapter 4. We proposed a novel property of PMCs called additivity,

which is true for PMCs, whose value for a serial execution of two applications

is equal to the sum of values for the individual execution of each application,

and study the additivity of PMCs offered by the popular state-of-the-art tools,

Likwid [38] and PAPI [37] on a modern Intel Haswell multicore server CPU. A

linear predictive energy model is consistent if and only if its predictor variables

are additive in the sense that the vector of predictor variables for a serial exe-

cution of two applications is the sum of vectors for the individual execution of

each application. The property, therefore, is based on a simple and intuitive

rule that the value of a PMC for a serial execution of two applications is equal

114

to the sum of its values obtained for the individual execution of each applica-

tion. They show that many PMCs in Likwid and PAPI that are widely used in

models as key predictor variables are non-additive.

We further proposed a novel theory of energy predictive models for com-

puting and its practical implications to improve the prediction accuracy of linear

energy predictive models. The implications are unified in a consistency test,

which contains a suite of properties that include determinism, reproducibility,

and additivity to select model variables and constraints for model coefficients.

The authors show that failure to satisfy the requirements of the test worsens

the prediction accuracy of linear energy predictive models.

In this chapter, we compare two types of energy predictive models con-

structed from the same set of experimental data and at two levels, platform

and application. The first type contains linear regression (LR) models employ-

ing PMCs selected using the theoretical model of the energy of computing.

The second type has sophisticated statistical learning models, random forest

(RF), and neural network (NN), that are based on PMCs selected using corre-

lation and principal component analysis 1.

We divide the experiments in this chapter into two main groups: Group 1

and Group 2. In Group 1, we experimentally compare the prediction accuracy

of platform-level energy predictive models on HCLServer1 (Table 3.1). The

models are analyzed in two configurations. In the first configuration, the mod-

els are trained and tested using datasets that contain all the applications. In

the second configuration, the dataset of applications is split into two datasets,

one for training models and the other for testing models. We demonstrate that

LR models exhibit better prediction accuracies than RF and NN models in both

the configurations (5.09× and 4.37× times specifically for the first configura-

tion).

In Group 2, we study the accuracy of application-specific energy predictive

models using HCLServer2 (Table 3.1). This group also contains models of the

two types. We choose two well-known and highly optimized scientific kernels

offered by the Intel Math Kernel Library (MKL), 2D fast Fourier transform (FFT)

and dense matrix multiplication (DGEMM). We select a set of nine most addi-

1This chapter is chiefly based on [146] and [147].

115

tive PMCs (PA) and a set of nine PMCs that are non-additive (PNA) that are

common for both the applications. PNA belongs to the dominant PMC groups

reflecting the energy-consuming activities and have been widely employed in

the models found in the literature (Section 2.3.5). We build LR models employ-

ing PA and PNA. We demonstrate that the models based on PA have better

prediction accuracy than the models based on PNA. To build online energy

predictive models based on four PMCs, we compose two subsets of PMCs,

PA4 and PNA4 from PA and PNA, containing four PMCs highly positively cor-

related with energy. Models that use PA4 exhibit 3.44× and 1.71× better

average prediction accuracy than models using PNA4. We conclude, there-

fore, that a high positive correlation with dynamic energy consumption alone is

not sufficient to provide good prediction accuracy but should be combined with

methods such as additivity that take into account the physical significance of

the model variables originating from the theory of energy conservation of com-

puting. For the same two applications, we compare the LR models based on

the set of four most additive and highly positively correlated PMCs (PA4) with

the RF and NN models based on four PMCs selected using correlation and

PCA. The results show that the LR model performs 1.57× and 1.74 × times

better than RF and NN models.

Based on our experiments, we conclude that linear regression models

based on PMCs selected using the theoretical model of energy of comput-

ing perform better than RF and NN models using the standard statistical ap-

proaches.

To summarize, our key contribution in this work is that we present the first

comprehensive experimental study comparing linear regression models em-

ploying PMCs selected using a theoretical model of energy of computing with

sophisticated statistical learning models, random forest and neural network,

that are constructed using PMCs selected based on correlation and principal

component analysis. We show that the LR models perform better than the

RF and NN models thereby highlighting two important points. First, the con-

sistent accuracy of LR models highlight the importance of taking into account

domain-specific knowledge for model variable selection, in this case, the phys-

ical significance of the PMCs originating from the theory of energy predictive

116

5.1. TERMINOLOGY RELATED TO ENERGY, PREDICTION ERROR
MEASURES, AND STATISTICAL TECHNIQUES

models for computing. Second, according to the theory of energy predictive

models for computing, any non-linear energy model (in this case, the RF and

NN models) employing PMCs only will be inconsistent and hence inherently

inaccurate. A non-linear energy model, in order to be accurate, must employ

non-additive model variables in addition to PMCs.

The rest of this chapter is organized as follows. First we present the termi-

nology and then recap the practical implications of the theory of energy predic-

tive models for computing. We then present our experimental setup including

the platform and application details, tools and modelling techniques. The fol-

lowing section presents the experimental results and discussions. Finally, last

section concludes the chapter.

5.1 Terminology Related to Energy, Prediction

Error Measures, and Statistical Techniques

5.1.1 Energy Consumption

Total energy consumption can be represented as a sum of static energy and

dynamic energy. We determine the static energy consumption by multiplying

the base or idle power of the system (i.e., with no running application) with

the application’s execution time. However, we calculate the dynamic energy

consumption (energy consumption of the application) by subtracting the static

energy from the total energy utilized by the system during the application exe-

cution. In other words, if PS represents the base or idle power of the system,

ET is the total energy consumption of the system during an application run for

TE seconds, then the dynamic energy consumption ED can be determined by

using Equation 5.1.

ED = ET − (PS × TE) (5.1)

The rationale backing the use of dynamic energy consumption rather than

total energy consumption is given in the Appendix A.1.

117

5.1. TERMINOLOGY RELATED TO ENERGY, PREDICTION ERROR
MEASURES, AND STATISTICAL TECHNIQUES

5.1.2 Prediction Error Measures

We compare the prediction accuracy of models using two measures: a) Rela-

tive error, and b) Proportional error. The relative error p of a predicted dynamic

energy consumption e with respect to the ground truth dynamic energy con-

sumption r is given below:

p =
|r − e|
r
× 100 (5.2)

The measure p gives a lower relative error for a model that underestimates

than a model that overestimates (for example: when you consider the same

proportion for the underestimated and the overestimated values of e with r).

This can negatively impact the interpretation of the results. Juan-Antonio et al.

[148] propose the proportional error µ to correct the anomaly. The proportional

error for model prediction e with the ground truth r is a ratio of a maximum of

the two values with the minimum of the two values. It is represented by the

following equation 5.3.

µ =
max(r, e)

min(r, e)
(5.3)

µ is always greater than 1 if there exists an error, and equal to 1 otherwise.

5.1.3 Model Variable Selection Techniques

We employ two model variable selection methods for random forest and neural

network models. They are: 1). Correlation, and 2). Principal Component

Analysis (PCA).

Correlation is a statistical metric to understand the relationship between

two variables and is calculated using the following equation 5.4.

Cep =

∑
(ei − e)(pi − p)√∑

(ei − e)2
∑

(pi − p)2
(5.4)

where, Cep is the correlation coefficient between the dynamic energy con-

sumption e and the PMC pi. ei represents energy consumption of an appli-

cation and e is the mean of the energy of all the applications in the data-set.

118

5.2. THEORY OF ENERGY PREDICTIVE MODELS FOR COMPUTING:
PRACTICAL IMPLICATIONS

pi is the PMC count and p is its mean for all the applications in the data-set.

The value of the correlation coefficient is between -1 to 1. A value of -1 for

Cep means perfect negative correlation, 0 signifying no correlation, and +1, a

perfect correlation between the energy and the PMC.

Principal Component Analysis (PCA) [149] is applied to determine the most

statistically influential PMCs. It is a multivariate statistical technique for feature

extraction and is used for dimensionality reduction in high-dimensional data.

It uses a correlation matrix to ease the analysis by selecting the most valu-

able features in a data-set. The top principal component captures the maxi-

mum variability in the data, and each succeeding component has the highest

variability subject to the constraint imposing orthogonality with the previous

principal components.

5.2 Theory of Energy Predictive Models for Com-

puting: Practical Implications

A theory of energy predictive models for computing has been progressively

developed starting with the proposal of a criterion for selection of PMCs in

the research work [54] followed by a formal description of the theory and its

practical implications for improving the prediction accuracy of linear energy

predictive models in [135].

The theory of energy predictive models for computing is a formalism con-

taining properties of PMC-based energy predictive models that are manifesta-

tions of the fundamental physical law of energy conservation. The properties

capture the essence of single application runs and characterize the behavior

of serial execution of two applications. They are intuitive and experimentally

validated and are formulated based on the following observations:

• In a stable and dedicated environment, where each run of the same

application is characterized by the same PMC vector, for any two appli-

cations, the PMC vector of their serial execution will always be the same.

• An application run that does not perform any work does not consume or

119

5.2. THEORY OF ENERGY PREDICTIVE MODELS FOR COMPUTING:
PRACTICAL IMPLICATIONS

generate energy. It is represented by a null PMC vector (where all the

PMC values are zeroes).

• An application with a PMC vector that is not null must consume some

energy. Since PMCs account for energy consuming activities of appli-

cations, an application with any energy consuming activity higher than

zero activity must consume more energy than zero.

• Finally, the consumed energy of compound application is always equal

to the sum of energies consumed by the individual applications. A com-

pound application is defined as the serial execution of two applications,

which we call the base applications.

The practical implications of the theory for constructing accurate and reli-

able linear energy predictive models are unified in a consistency test. The test

includes the following selection criteria for model variables, model intercept,

and model coefficients:

• Each model variable must be deterministic and reproducible. In the case

of PMC-based energy predictive models, the multiple runs of an applica-

tion keeping the operating environment constant must return the same

PMC count.

• Each model variable must be additive. The property of additivity is fur-

ther summarized in the following section.

• The model intercept must be zero.

• Each model coefficient must be positive.

The first two properties are combined into a additivity test for the selection

of PMCs. A linear energy predictive model employing PMCs and which vio-

lates the properties of the consistency test will have poor prediction accuracy.

By definition and intuition, PMCs are all pure counters of energy-

consuming activities in modern processor architectures and as such must be

additive. Therefore, according to the theory of energy predictive models for

120

5.2. THEORY OF ENERGY PREDICTIVE MODELS FOR COMPUTING:
PRACTICAL IMPLICATIONS

computing, any consistent, and hence accurate, energy model, which only em-

ploys PMCs, must be linear. This also means that any non-linear energy model

employing PMCs only, will be inconsistent and hence inherently inaccurate. A

non-linear energy model, in order to be accurate, must employ non-additive

model variables in addition to PMCs.

5.2.1 Additivity of PMCs

The property of additivity is based on a simple and intuitive rule that if a PMC

is intended as a model variable in a linear energy predictive model, then its

value for a compound application should be equal to the sum of its values

for the executions of the base applications constituting the compound appli-

cation. It is based on the experimental observation that the dynamic energy

consumption of a serial execution of two applications is the sum of dynamic

energy consumption observed for the individual execution of each application.

The additivity of a PMC is determined as follows. At first, we collect the

values of the PMC for the base applications by executing them separately.

Then, we execute the compound application and obtain its value of the PMC.

Typically, the core computations for the compound application consist of the

core computations of the base applications programmatically placed one after

the other. If the PMC of the compound application is equal to the sum of the

PMCs of the base applications (with a tolerance of 5.0%), we classify the PMC

as potentially additive. Otherwise, it is non-additive.

For each PMC, we determine the maximum percentage error. For a com-

pound application, the percentage error is calculated as follows:

Error(%) = | (eb1 + eb2)− ec
(eb1 + eb2 + ec)/2

| × 100 (5.5)

where ec, eb1, eb2 are the PMCs for the compound application and the con-

stituent base applications respectively. Additivity test error for a PMC is the

maximum of percentage errors for all the compound applications in the exper-

imental test-suite.

We use a tool called AdditivityChecker (Appendix B.2), that automates the

121

5.3. EXPERIMENTAL SETUP

determination of the additivity value of a PMC.

5.3 Experimental Setup

5.3.1 Evaluation Platform

The experiments are carried out on two modern multi-core platforms: 1). Intel

Haswell dual-socket server, and 2). Intel Skylake single-socket server. The

specifications for both are given in Table 3.1.

5.3.2 Experimental Applications

Our test suite (Table 3.2) comprises a diverse set of benchmarks containing

highly memory-bound and compute-bound scientific computing applications

such as DGEMM and FFT from Intel math kernel library (MKL), scientific ap-

plications from NAS Parallel benchmark suite, Intel HPCG, stress, and two

unoptimized applications.

5.3.3 Experimental Tools

We measure the following during an application execution: 1). Dynamic en-

ergy consumption, 2). Execution time, and 3). PMCs. The experimental

workflow is shown in the Figure 5.1. The dynamic energy consumption is de-

termined using system-level power measurements provided by WattsUp pro

power meter. The readings are obtained programmatically using a detailed

statistical methodology employing HCLWattsUp API [132]. The power meters

are periodically calibrated using an ANSI C12.20 revenue-grade power meter,

Yokogawa WT210. To ensure the reliability of our results, we follow a statistical

methodology where a sample mean for a response variable is obtained from

several experimental runs. We follow a strict statistical methodology to ensure

the reliability of our experiments (Appendix A.3).

We use Likwid package [38] to obtain the PMCs. It offers 164 PMCs and

385 PMCs on Intel Haswell and Intel Skylake platform, respectively. We elim-

122

5.3. EXPERIMENTAL SETUP

Figure 5.1: Experimental workflow to determine the PMCs for our HCLServer
platforms.

123

5.3. EXPERIMENTAL SETUP

inate PMCs with counts less than or equal to 10. These PMCs have no sig-

nificance in modelling the dynamic energy consumption of our platform since

they are non-reproducible over several runs of the same application on our

platform.

The reduced set contains 151 PMCs for Intel Haswell and 323 for Intel

Skylake. The collection of all of them is tedious since only four PMCs can

be obtained in a single application run. This is because of a limited number

of hardware registers dedicated to storing them. We also notice that some

PMCs can only be collected individually or in sets of two or three for a single

execution of an application. Therefore, we observe that each application must

be executed about 53 and 99 times on Intel Haswell and Intel Skylake platform,

respectively, to collect all the PMCs.

5.3.4 Energy Predictive Modelling Techniques

Table 5.1: Modelling Parameters

Linear Regression
Estimation Method Least-squares
Model Coefficients Positive
Intercept 0

Random Forests
Software Tool R Programming Studio
Variables in each split 3
Type Regression
Number of Trees 500

Neural Networks
Network type Feed-forward back propagation
Input parameters PMCs
Output parameters Dynamic energy
Training algorithm Bayesian regularization
Performance function Mean-Squared Error (MSE)
Number of neurons 20
Network layers 2
Activation function Linear

124

5.3. EXPERIMENTAL SETUP

The two types of energy predictive models employed in our work are de-

scribed below.

• Linear Regression (LR): A LR based model can be represented as:

Yi =
∑M

j=0 βjXij + εi

where, i = 1, 2, ..., N represent the number of observations and j =

1, 2, ...,M represent the number of independent variables.

In our models, Yi are dynamic energy measurements obtained using

HCLWattsUp API and Xi are the PMCs. ε represents the error/noise in

measurements. We build a specialized linear model using a regression

technique that constrains the coefficients (β) to be positive.

• Random Forest (RF): A RF technique is a supervised learning algo-

rithm using a decision tree-based approach to train on a data-set and

output mean prediction from individual trees. It is considered for its accu-

racy in classification and regression-based tasks [150]. It is a non-linear

machine learning model build by constructing many linear boundaries.

The overall non-linearity is because a single linear function can not be

used to classify and regress on each iteration of the decision tree.

We apply the RF based regression to the various data-set and determine

its prediction accuracy for PMCs in different experimental configurations.

• Neural Networks (NN): A NN model is inspired by neurons of a hu-

man brain and contains an interconnected group of nodes where each

node computes weights and biases and give an output prediction. The

learning function is Bayesian regularization that gives optimal regulariza-

tion parameters in an automated fashion [151]. Bayesian regularization

updates the weight and biases by using the Levenberg-Marquardt algo-

rithm [152], which is used to train the NN up to 100 times quicker in com-

parison with the commonly used gradient-descent and back-propagation

method. We set the activation function as linear. It’s an indicative im-

plementation; a motivated neural network expert would likely produce a

better network than this.

125

5.3. EXPERIMENTAL SETUP

The training parameters employed to build the models are given in Ta-

ble 5.1. Figure 5.2 explains the machine learning model pipeline. It has

four main stages: 1). Data collection, 2). PMC selection, 3). Model train-

ing, and 4). Model testing or validation. After the collection of the data-set

from HCLServers, the data is passed through a PMC selection stage which

first normalizes the PMC counts. To construct the LR models, PMCs are first

checked for their additivity using the Additivity Test and the top most additive

PMCs are selected as model variables. To build the RF and NN models, the

PMCs are first evaluated based on their statistical correlation. The set of top

positively correlated PMCs is then further pruned using PCA. The correlation

and PCA methods are explained in detail in the section 5.4. The set of se-

lected PMCs is then split into two subsets. One for training the models and the

other for testing their accuracy.

Figure 5.2: Machine Learning Model Building and Evaluation Pipelines for LR,
RF and NN

126

5.4. EXPERIMENTAL RESULTS

5.3.5 Selection Methods for PMCs

We now summarize the steps to select model variables or PMCs using two

approaches as described below:

1. PMCs are selected based on the consistency test from the theory of

energy predictive models for computing [135] and employed as model

variables in linear regression (LR) models. The steps for the PMC selec-

tion include:

• The most additive PMCs for a set of applications are selected.

• During the execution of the applications, the individually powered

computing components (memory and CPU) with activities that re-

sult in dynamic energy consuming are identified.

• The most additive PMCs that belong to computing components

contributing towards dynamic energy consumption are then se-

lected as model variables.

2. PMCs are selected using correlation and PCA based statistical methods

and then employed in non-linear models such as random forest (RF) and

neural network (NN). The selection method is composed of two stages:

• In the first stage, we list all the PMCs in the increasing order of

positive correlation with dynamic energy consumption. We select

all the PMCs with a correlation coefficient of over 0.90.

• In the second stage, we apply the principal component analysis

(PCA) on the PMCs selected in the first stage to pick the most sta-

tistically influential PMCs. Figure 5.3 illustrates this PMC selection

process.

5.4 Experimental Results

We divide our experiments into two groups, Group 1 and Group 2, as follows:

127

5.4. EXPERIMENTAL RESULTS

Figure 5.3: PMC selection process using Statistical Methods.

128

5.4. EXPERIMENTAL RESULTS

• Group 1: We employ this group to study the prediction accuracy of

the platform-level energy predictive models. We use two experimen-

tal configurations. In the first configuration, we split the full data-set

representing all the applications into two subsets, one for the training

and the other for testing. The training and test data-sets contain data

points encompassing all the applications. In the second configuration,

the models are trained on a data-set for one set of applications and

tested against a different set of applications. The experiments are per-

formed on HCLServer1 (Table 3.1).

• Group 2: We employ this group to study the accuracy limits of the

application-level energy predictive models. Two highly memory-bound

and compute-bound scientific computing applications, DGEMM and FFT

from Intel MKL, are used for this purpose. The experiments are per-

formed on HCLServer2 (Table 3.1).

Group 1: Comparison of Prediction Accuracy of Platform-

Level Energy Predictive Models

Using a diverse application set (Table 3.2), we build platform-level energy pre-

dictive models employing model variables that are selected using two afore-

mentioned approaches, consistency test, and statistical methods.

Energy Predictive Models Using Consistency Test

Table 5.2: List of selected PMCs and their additivity test errors (%).

Selected PMCs Additivity
Test Error(%)

PL1: AVX_INSTS_ALL 7
PL2: UOPS_EXECUTED_PORT_PORT_6 8
PL3: IDQ_MITE_UOPS 11
PL4: CPU_CLOCK_THREAD_UNHALTED 13
PL5: L2_RQSTS_MISS 17
PL6: BR_INST_RETIRED_ALL_BRANCHES18

129

5.4. EXPERIMENTAL RESULTS

Table 5.3: Linear regression models with their minimum, average, and maxi-
mum prediction errors.

Model PMCs Relative Errors p in
[%] (Min, Avg, Max)

Proportional Errors µ
(Min, Avg, Max)

LR1 PL1,PL2,PL3,PL4,PL5,PL6 (2.1, 27.9, 85.1) (1.04, 1.703, 5.190)
LR2 PL1,PL2,PL3,PL4,PL5 (1.9, 26.01, 82.91) (1.02, 1.61, 5.021)
LR3 PL1,PL2,PL3,PL4 (1.9, 26.01, 82.91) (1.02, 1.61, 5.021)
LR4 PL1,PL2,PL3 (1.21, 25.15, 80.2) (1.01, 1.56, 4.91)
LR5 PL1,PL2 (0.66, 21.80, 71) (1.003, 1.382, 4.65)
LR6 PL1 (0.96, 24.6, 79) (1.004, 1.50, 4.85)

(a) (b)

(c) (d)

Figure 5.4: Real and predicted dynamic energy consumptions using
HCLWattsUp and linear regression models versus (a). PMC PL1 for train set
applications, (b). PMC PL1 for test set applications, (c). PMCs, PL1 and PL2,
for train set applications, and (d). PMCs, PL2 and PL2, for test set applications.

130

5.4. EXPERIMENTAL RESULTS

Table 5.4: Prediction accuracies for linear regression models for configuration
A2.

Model Data-set Relative Errors p in
[%] (Min, Avg, Max)

Proportional Errors µ
(Min, Avg, Max)

LR5-A2 Training (1.19, 25, 136) (1.002, 1.527, 4.77)
LR5-A2 Testing (1.03, 24, 101) (1.009, 1.416, 4.71)

The experimental methodology for measuring and selecting the PMCs fol-

lows:

• The PMCs are obtained using Likwid tool, which classifies them into

performance groups. The list of the performance groups is given in Ap-

pendix B.1. We apply the first step of the consistency test, which is to

check if the PMCs are deterministic and reproducible using the following

two steps:

– PMCs with counts near zero are removed. These PMCs have

no statistical significance on modelling energy consumption of our

platform because we found them to be non-reproducible. Several

PMCs with counts equal to zero are also removed. The reduced

set contains 151 and 298 PMCs on Intel Haswell and Intel Skylake,

respectively.

– We broadly compare the PMCs obtained using Likwid, PAPI, and

Linux Perf. We remove PMCs that show different counts for different

tools. The final set contains 115 and 224 PMCs on Intel Haswell

and Intel Skylake platform.

• We discover that all the work performed during the execution of the ap-

plications in our test suite is due to CPU and memory activities. We run

a set of experiments to evaluate the contribution of both of these compo-

nents towards the dynamic energy consumption. We summarize them

below:

– We execute a synthetic application (app-cpu) performing floating-

point operations on all the processor cores for 10 seconds and

131

5.4. EXPERIMENTAL RESULTS

measure its dynamic energy consumption. HCLWattsUp reports

the dynamic energy consumption to be 1337 joules.

– We then execute another synthetic application (app-mem) perform-

ing memcpy() operations on all the memory blocks for 10 seconds

and measure the dynamic energy consumption. We find the energy

consumption to be insignificant and can not be measured within the

statistical confidence of 95%.

– We further execute app-cpu for 20 seconds and 30 seconds and

found the dynamic energy consumption to be equal to 2596 joules

and 3821 joules, respectively. However, the execution of app-mem

for 20 and 30 seconds results in dynamic energy consumption less

than 5 joules.

• Based on the above experiments, we remove the PMCs that belong to

Likwid main memory group for any further analysis due to two reasons.

First, the memory activities do not reflect any contributions to the dy-

namic energy consumption on our platforms. Second, low counts for

memory PMCs add noise that affects the training of models and unduly

worsen the prediction accuracy of the models.

• The CPU activities during the application run are represented by PMCs

that belong to the following dominant groups: cache, branch instructions,

micro-operations (uops), floating-point instructions, instruction decode

queue, and cycles.

• We then study the additivity of PMCs belonging to the dominant groups.

– We build a data-set of 277 points as base applications by execut-

ing the applications from our test suite with different problem sizes.

Each point contains the dynamic energy consumption and PMCs

corresponding to the base applications.

– We execute another set of 50 compound applications from the se-

rial combination of base applications and record their dynamic en-

ergy consumption and PMCs.

132

5.4. EXPERIMENTAL RESULTS

– For all PMCs, we calculate the percentage errors of each com-

pound application with the sum of base applications. The additivity

test error for each PMC is the maximum of the percentage errors

for all compound applications.

• We found no PMC to be absolutely additive (with the additivity test error

of less than 5%), in general, for all applications in the test suite (Ta-

ble 3.2). Therefore, we select one top additive PMC for each dominant

PMC group.

Table 5.2 list the selected PMCs (PL1,· · · ,PL6) in the order of increasing

additivity test error. The PMC PL1 is highly additive compared to the rest.

We construct a data-set of 448 points for different configurations for appli-

cations in our test suite (Table 3.2). We split the data-set into two subsets,

335 points for training the models, and 113 points for testing their prediction

accuracy. We used this division based on best practices and expert opinions

in this domain.

We build six LR models, {LR1, LR2, LR3, LR4, LR5, LR6}. To impose the

constraints of the consistency test, the linear models are built using penalized

linear regression using R programming interface that forces the coefficients to

be non-negative and to have zero intercepts. The models contain decreasing

number of non-additive PMCs. Model LR1 employs all the selected PMCs as

predictor variables. Model LR2 is based on five most additive PMCs. PMC

PL6 is removed because it has the highest non-additivity. Model LR3 uses

four most additive PMCs and so on until Model LR6 containing the highest

additive PMC, which is PL1.

We compare the predictions of the models with system-level physical mea-

surements using HCLWattsUp, which we consider to be the ground truth [36].

The minimum, average, and maximum prediction errors for the models are

given in Table 5.3. One can see that the accuracy of the models improves as

we remove the highest non-additive PMCs one by one until Model LR5, which

exhibits the least average (p, µ) of (21.8%, 1.382), respectively. LR5 employs

two most additive PMCs, PL1 and PL2. PL1 accounts for the floating-point op-

erations and PL2 accounts for a portion of micro-operations executing inside

133

5.4. EXPERIMENTAL RESULTS

the CPU cores during the execution of an application. We observe that LR1

has the worst average (p, µ) of (27.9%, 1.703) due to the poor linear fit.

Figures 5.4(a) and 5.4(b) show the plots for ground truth and predicted

dynamic energy consumptions obtained using HCLWattsUp and LR6 against

the top additive PMC (that is, PL1) for the train and test data-sets, respec-

tively. Similarly, Figure 5.4(c) and 5.4(d) shows the plots for ground truth

and predicted dynamic energy consumptions obtained using HCLWattsUp and

LR5 against the top two additive PMCs (that are, PL1 and PL2) for train and

test data-sets, respectively. It can be seen that the training dataset and the

test dataset include all the applications. Furthermore, the combined use of

PL1 and PL2 as model variables in LR5 increases its prediction power and

makes it the most accurate and consistent model. This is because only one

PMC (despite being most additive) is not able to track all the dynamic energy-

consuming activities for applications in a modern multicore CPU.

The model LR5, employing PL1 and PL2 as model variables, is built using

a training data set that contains all the applications and is tested against the

test dataset that also contains all the applications. Let us denote this split

configuration of training and test datasets as A1. We consider a different split

configuration, A2. In A2, the test set applications do not include the training

set applications. The training set contains 335 points and the test set contains

113 points.

We then build a model LR5-A2 using the training data-set from configura-

tion A2. The minimum, average, and maximum p and µ for train and test set

using LR5-A2 are given in Table 5.4. Comparison of the average p and µ for

both test sets using LR5 (or LR5-A1) and LR5-A2 shows only a minor increase

from 21.8% to 24% and 1.382 to 1.416, respectively. Therefore, we conclude

that the accuracy and consistency of the LR model employing the two most

additive PMCs is generic and therefore the LR model generalizes well.

Energy Predictive Models Using Statistical Methods

We first present the experimental methodology to select the model variables.

The data-set used for this purpose includes 277 base applications. Each ap-

134

5.4. EXPERIMENTAL RESULTS

Table 5.5: List of PMCs selected in stage 1 of approach B where the PMCs
are listed in the increasing order of positive correlation with dynamic energy
consumption.

UOPS L2
UOPS_EXECUTED_TOTAL_CYCLES L2_RQSTS_ALL_DEMAND_DATA_RD_HIT
UOPS_EXECUTED_CORE L2_RQSTS_ALL_DEMAND_DATA_RD
UOPS_EXECUTED_CORE_STALL_CYCLES L2_RQSTS_CODE_RD_HIT
UOPS_RETIRED_CORE_USED_CYCLES L2_RQSTS_CODE_RD_MISS

BRANCHES ICACHE
BR_INST_RETIRED_ALL_BRANCHES ICACHE_ACCESSES
BR_MISP_RETIRED_ALL_BRANCHES CPU CLOCK

IDQ CPU_CLK_UNHALTED_ANY
IDQ_MITE_UOPS CPU_CLOCK_THREAD_UNHALTED_ONE_THREAD
IDQ_DSB_UOPS CPU_CLOCK_UNHALTED_TOTAL_CYCLES
IDQ_ALL_DSB_CYCLES_4_UOPS AVX

MEM AVX_INSTS_ALL
MEM_LOAD_UOPS_RETIRED_ALL_ALL
MEM_UOPS_RETIRED_ALL

Table 5.6: List of prime PMCs obtained after applying principal component
analysis.

PL7: UOPS_EXECUTED_TOTAL_CYCLES
PL8: UOPS_EXECUTED_CORE
PL9: UOPS_EXECUTED_CORE_STALL_CYCLES
PL10: CPU_CLOCK_THREAD_UNHALTED_ONE_THREAD
PL11: CPU_CLOCK_UNHALTED_TOTAL_CYCLES
PL12: BR_INST_RETIRED_ALL_BRANCHES

Table 5.7: Prediction accuracies for random forest models.

Model Data-set Relative Errors p in
[%] (Min, Avg, Max)

Proportional Errors µ
(Min, Avg, Max)

RF-A1 Training (1.12, 26.6, 63) (1.003, 2.13, 8.51)
RF-A1 Testing (1.24, 28.7, 57) (1.002, 3.61, 8.22)
RF-A2 Training (2.37, 25.2, 61) (1.001, 2.92, 7.76)
RF-A2 Testing (3.92, 37, 293) (1.001, 7.21, 21.41)

135

5.4. EXPERIMENTAL RESULTS

Table 5.8: Prediction accuracies for neural network models.

Model Data-set Relative Errors p in
[%] (Min, Avg, Max)

Proportional Errors µ
(Min, Avg, Max)

NN-A1 Training (2.31, 26.6, 65) (1.002, 3.32, 9.12)
NN-A1 Testing (2.09, 25.1, 58) (1.01, 2.21, 6.28)
NN-A2 Training (2.17, 25.4, 57) (1.005, 2.56, 5.39)
NN-A2 Testing (4.96, 44, 492) (1.033, 6.19, 19.74)

plication is represented by a data point that contains the dynamic energy con-

sumption and 151 PMCs. We apply the first stage of PMC selection using

statistical methods shown in Figure 5.3. We list all the PMCs in the increasing

order of positive correlation with dynamic energy consumption. All the PMCs

with a correlation coefficient of over 0.90 are then selected. The selected

PMCs are listed in Table 5.5 based on their groups. In the second stage, we

apply the principal component analysis (PCA) on the selected PMCs from the

first stage. The most statistically influential PMCs obtained after stage 2 are

termed as prime PMCs, which are shown in Table 5.6.

We employ prime PMCs in RF and NN models using a data-set of 448

points. Each point in a data-set contains dynamic energy consumption for an

application with particular input and the prime PMCs. We divide the data-set

into a training dataset (335 points) and a test dataset (113 points). The splitting

is done using two aforementioned configurations, A1 and A2.

We build two sets of models, RFS = {A1-RF, A2-RF}, and NNS = {A1-NN,

A2-NN}. The RR and NN parameters used to build the models are given in

Table 5.1. We compare the predictions of the models with the ground truth.

Tables 5.7 and 5.8 show the minimum, average, and maximum p and µ from

RFS and NNS. Figures 5.5(a) and 5.5(b) compare the average prediction ac-

curacies of the most accurate LR model with the RF and NN models. The

least average p and µ is obtained for the LR model with two model variables,

that is, 21.80% and 1.38. RF-A2 and NN-A2 for the test set yields the highest

average (p, µ) of (37%, 7.21) and (44%, 6.19), respectively.

136

5.4. EXPERIMENTAL RESULTS

(a)

(b)

Figure 5.5: Comparison of (a). average relative prediction accuracies, and (b).
average proportional prediction accuracies, for LR5, RF, and NN.

137

5.4. EXPERIMENTAL RESULTS

Discussion

Following are the salient observations from the results:

• The PMCs selected for training the models should represent the dy-

namic energy-consuming activities during the application execution. We

discover that, in our platform, the contribution of memory-centric opera-

tions towards the dynamic energy consumption is insignificant. There-

fore, we use CPU-centric PMCs such as floating-point operations and

micro-operations originating from processor core for training the energy

predictive models.

• The average relative and proportional prediction errors for LR is better

than RF and NN for all the models. There is a significant difference in

the average prediction errors for test applications in the configuration A2

where the test applications do not include the training set applications.

RF and NN models perform poorly for A2. The average relative predic-

tion accuracy of the best LR model only degrades by 2%. We conclude

that a machine learning-based platform-level energy predictive model

employing PMCs selected using statistical methods provide good pre-

diction accuracy when data points in the train set and test set belong to

the same set of applications. This is because of their ability to memo-

rize well the input domain of energy values of the applications. However,

their accuracy suffers when the train and test data sets contain different

sets of applications suggesting their inability to provide good prediction

accuracy for a general set of applications (that is, to generalize well).

• The average prediction accuracies (p) for LR is 1.54× and 1.84× better

than RF and NN, respectively, for test applications in A2. The propor-

tional prediction accuracies (µ) for LR is 5.09× and 4.37× better than

RF and NN, respectively. This suggests that µ is better than p for the

interpretation of results.

• The results highlight two important points. First, the consistent accuracy

of LR models stresses the importance of taking into account domain-

specific knowledge for model variable selection, in this case, the physical

138

5.4. EXPERIMENTAL RESULTS

significance of the PMCs originating from the conservation of energy of

computing. Second, according to the theory of energy predictive models

for computing, any non-linear energy model (in this case, the RF and NN

models) employing PMCs only, will be inconsistent and hence inherently

inaccurate. A non-linear energy model, to be accurate, must employ

non-additive model variables in addition to PMCs.

Group 2: Comparision of Prediction Accuracy of

Application-Level Energy Predictive Models

In this section, we study the accuracy of application-specific energy predic-

tive models. The experiments are conducted HCLServer2 (Table 3.1). We

compare the models built using PMCs selected via the aforementioned ap-

proaches, consistency test and statistical methods. First, we build LR models

that satisfy the properties of the consistency test that is based on the theory of

energy conservation of computing. We also build LR models employing non-

additive PMCs that belong to the dominant PMCs groups reflecting energy-

consuming activities for application execution and that have been widely em-

ployed by energy models found in the literature (Section 2.3.5). Finally, we

build RF and NN models employing PMCs selected using statistical methods

such as correlation and PCA.

We now present the experimental methodology using consistency test to

build LR models:

• Out of the 385 PMCs available for this platform, we found no PMC to

be additive, in general, within tolerance of 5% for all applications in

our test suite (Table 3.2). However, many PMCs are highly additive for

each application. We select for two highly optimized scientific kernels:

Fast Fourier Transform (FFT) and Dense Matrix-Multiplication applica-

tion (DGEMM), from Intel Math Kernel Library (MKL).

• We check if the PMCs are reproducible and deterministic by running the

same application several times without any change in the operating en-

vironment. The PMC is considered to be reproducible and deterministic

139

5.4. EXPERIMENTAL RESULTS

Table 5.9: Additive and non-additive PMCs highly correlated with dynamic en-
ergy consumption. 0 to 1 represents positive correlation of 0% to 100%.

Additive PMCs Correlation
AL1 UOPS_RETIRED_CYCLES_GE_4_UOPS_EXEC 0.992
AL2 FP_ARITH_INST_RETIRED_DOUBLE 0.993
AL3 BR_INST_RETIRED_ALL_BRANCHES 0.860
AL4 UOPS_EXECUTED_CORE 0.993
AL5 UOPS_DISPATCHED_PORT_PORT_4 0.870
AL6 IDQ_DSB_CYCLES_6_UOPS 0.981
AL7 IDQ_ALL_DSB_CYCLES_5_UOPS 0.972
AL8 IDQ_ALL_CYCLES_6_UOPS 0.993
AL9 L2_RQSTS_CODE_RD_HIT 0.821

Non-additive PMCs
AL10 ICACHE_64B_IFTAG_MISS 0.960
AL11 CPU_CLOCK_THREAD_UNHALTED 0.600
AL12 BR_MISP_RETIRED_ALL_BRANCHES 0.992
AL13 UOPS_RETIRED_CORE_USED_CYCLES 0.751
AL14 FRONTEND_RETIRED_L2_MISS 0.806
AL15 ITLB_MISSES_STLB_HIT 0.111
AL16 L2_TRANS_CODE_RD 0.860
AL17 IDQ_MS_UOPS 0.99
AL18 ARITH_DIVIDER_COUNT 0.986

Table 5.10: Prediction accuracies of LR models using nine PMCs.

Model PMCs Relative Errors p in
[%] (Min, Avg, Max)

Proportional Errors µ
(Min, Avg, Max)

LR-A PA (0.013, 36.11, 226.1) (1.006, 1.55, 6.53)
LR-NA PNA (0.513, 86.11, 4073) (1.022, 2.41, 8.94)

Table 5.11: Prediction accuracies of LR models using four PMCs.

Model PMCs Relative Errors p in
[%] (Min, Avg, Max)

Proportional Errors µ
(Min, Avg, Max)

LR-A4 PA4 (0.024, 25.12, 87.25) (1, 1.42, 6.49)
LR-NA4 PNA4 (0.449, 85.61, 4039) (1.009, 2.43, 9)

140

5.4. EXPERIMENTAL RESULTS

Table 5.12: List of PMCs obtained for application-specific modelling using cor-
relation.

AL19: BR_INST_RETIRED_ALL_BRANCHES 0.99
AL20: ICACHE_64B_IFTAG_MISS 0.96
AL21: OFFCORE_REQUESTS_ALL_DATA_RD 0.96
AL22: L2_RQSTS_MISS 0.97
AL23: MEM_LOAD_RETIRED_L3_MISS 0.99
AL24: CYCLE_ACTIVITY_CYCLES_MEM_ANY 0.96
AL25: ITLB_MISSES_WALK_COMPLETED 0.95
AL26: IDQ_MS_MITE_UOPS 0.99
AL27: LSD_UOPS 0.97

Table 5.13: Prediction accuracies of application-specific RF and NN models.

Model Relative Errors p in
[%] (Min, Avg, Max)

Proportional Errors µ
(Min, Avg, Max)

RF-MA (.82, 24.82, 82.7) (1.004, 2.23, 5.32)
NN-MA (0.91, 23.95, 91.4) (1.002, 2.48, 4.17)

if its value for multiple executions of the same application lies within the

confidence interval of 95%. We discover that 323 PMCs are reproducible

and deterministic.

• A data-set of 50 base applications with a range of problem sizes for

DGEMM and FFT is used to study the additivity of their representa-

tive PMCs. For DGEMM, the problem sizes vary from 6500 × 6500 to

20000× 20000, and for FFT, the range of problem sizes is 22400× 22400

to 29000×29000. These problem sizes are selected because of the appli-

cations’ considerable execution time (> 3 seconds) so that HCLWattsUp

can accurately capture the dynamic energy consumptions. A data-set

of 30 compound applications is build using the serial execution of base

applications. The two data sets are then given as an input to Additivi-

tyChecker that returns the additivity test errors as an output. We found

some PMCs that are additive in common for both applications.

• We select nine PMCs that are highly additive with additivity test errors of

less than 1%. We also select nine PMCs that are non-additive for both

141

5.4. EXPERIMENTAL RESULTS

the applications but which have been employed as predictor variables in

energy predictive models given in the literature (Section 2.3.5). The set

of additive PMCs are denoted by PA and non-additive PMCs by PNA. In

both sets, there are no PMCs from the memory group because of the

insignificant contribution of memory activities towards the dynamic en-

ergy consumption. The selected PMCs with their correlations are given

in Table 5.9.

• By executing DGEMM and FFT, for the problem sizes ranging from

6400 × 6400 to 38400 × 38400 and 22400 × 22400 to 41536 × 41536,

respectively, with a constant step sizes of 64, we build a data-set con-

taining 801 points. We record the dynamic energy consumption and the

selected PMCs (Table 5.9) for each application. The data-set is further

divided into two subsets, one for training and the other for testing the

models. The train data-set contains 651 points and the test data-set

contains 150 points.

• We build two linear models, {LR-A, LR-NA}. The model LR-A is trained

using PMCs belonging to PA and the model LR-NA is trained using

PMCs belonging to PNA. Table 5.10 show the relative and proportional

prediction errors of the models. One can see that the models based on

PA have better average prediction accuracies than the models based on

PNA.

• Since only four PMCs can be collected in a single application run, the

selection of such a reliable subset is crucial to the prediction accuracy

of online energy models. We use PA and PNA to build two sets of four

most energy correlated PMCs. The first set PA4, {AL1, AL2, AL4, AL8},

is constructed using PA and the second set PNA4, {AL10, AL12, AL17,

AL18}, using PNA. We build two linear models, {LR-A4, LR-NA4}. The

model LR-A4 is trained using PMCs belonging to PA4 and the models

LR-NA4 is trained using PMCs belonging to PNA4. The training and test

data-sets are the same as before.

• Table 5.11 shows the relative and proportional prediction errors of the

142

5.4. EXPERIMENTAL RESULTS

models. We can see that model LR-NA4 built using highly correlated but

non-additive PMCs do not demonstrate much improvement in average

prediction accuracies when compared to model LR-NA based on nine

non-additive PMCs. However, LR-A4 performs 1.43× and 1.09× better

in terms of average relative and proportional accuracies, respectively.

The experimental methodology to select PMCs using statistical methods

and building RF and NN models is:

• We select the same two highly optimized scientific kernels and remove

the PMCs that are not reproducible and deterministic.

• We build a data-set of 50 applications using different problem sizes

for DGEMM and FFT. The range of problem sizes used for DGEMM

is 6500 × 6500 to 20000 × 20000, and for FFT is 22400 × 22400 to

29000 × 29000. We select this range because of reasonable execution

time (> 3 seconds) of the applications. We remove all the PMCs that

have less than 90% positive correlation with dynamic energy. We then

select the topmost correlated PMC from each Likwid group. The se-

lected prime PMCs are {AL19, AL20, ..., AL27} and listed in Table 5.12.

• Since only four PMCs can be employed in an online model, we select

the top four principal PMCs by applying principal component analysis.

The final list of prime PMCs includes {AL19, AL23, AL26, AL27}.

• We build a data-set containing 801 points representing DGEMM and

FFT for a range of problem sizes from 6400 × 6400 to 38400 × 38400

and 22400 × 22400 to 41536 × 41536, respectively, with a constant step

size of 64. We record the dynamic energy consumption and the prime

PMCs (AL19, AL23, AL26, and AL27) for each application. The data-

set is further divided into two subsets, one for training and the other for

testing the models. The train data-set contains 651 points and the test

data-set contains 150 points.

• We build a random forest model (RF-MA) and a neural network model

(NN-MA) using the training set. Table 5.13 shows the relative and pro-

143

5.4. EXPERIMENTAL RESULTS

portional prediction errors of the models. The average relative and pro-

portional prediction accuracies for RF and NN models are 24.8% and

2.23, and, 23.9% and 2.48, respectively.

• If we compare the average prediction accuracies of LR-A4 with RF-MA

and NN-MA, we do not see much difference in their relative prediction

accuracies. However, average proportional errors show that LR-A4 is

1.57× and 1.74× better than RF-MA and NN-MA, respectively.

Discussion

Following are the salient observations from the experimental results:

• For our experiments, the training data set is constructed by executing

the DGEMM and FFT with a constant increment of workload sizes us-

ing a fixed step size of 64. The generation of training data is a tedious

task. However, once a model with the desired accuracy is constructed, it

represents the relationship of a specific combination of PMCs and under-

stands the underlying pattern with dynamic energy consumption. There-

fore, the model can be used to predict the energy consumption for any

workload size for an application or a set of applications.

• The statistical methods lack the ability to check the physical significance

of the model variables with energy consumption. The PMCs used to

build the models for using this approach contains memory parameters

as model variables (for example, MEM_LOAD_RETIRED_L3_MISS in

Table 5.12). The practical implications of the theory of energy predictive

models for computing incorporate domain knowledge for linear dynamic

energy predictive models by introducing properties for the selection of

model variables, coefficients, and intercepts. In order to identify the pro-

cessor components that are the dominating contributors to dynamic en-

ergy consumption during the application executions, we conducted ex-

periments by stressing memory and CPU. We found that the dynamic

energy consumption because of memory operations is negligible on our

platforms. Therefore, linear regression models build using the theory

144

5.4. EXPERIMENTAL RESULTS

of energy predictive models for computing do not employ any memory

PMCs as model variables.

• The models based on most additive and highly correlated PMCs have

better average prediction accuracy when compared to the models based

on non-additive and highly positively correlated PMCs. We conclude,

therefore, that correlation with dynamic energy consumption alone is

not sufficient to provide good average prediction accuracy but should

be combined with methods such as additivity that take into account the

physical significance of the model variables originating from the theory

of energy predictive models for computing.

• Online LR models that employ PMCs selected using the theory of energy

conservation of computing perform better in terms of average propor-

tional accuracy than RF and NN based models that use purely statistical

methods to select PMCs.

• While we do not see much difference in the relative prediction accuracies

(p) of LR-A4, RF-MA, and NN-MA, average proportional errors show that

LR-A4 is 1.57× and 1.74× better than RF-MA and NN-MA, respectively.

This suggests that µ is a better statistic than p for accurate interpretation

of results.

• The consistent accuracy of LR models highlight the importance of tak-

ing into account domain-specific knowledge for model variable selection,

in this case, the physical significance of the PMCs originating from the

conservation of energy of computing.

• The results also endorse the guidelines of the theory of energy predictive

models for computing, which states that any non-linear energy model (in

this case, the RF and NN models) employing PMCs only, will be incon-

sistent and hence inherently inaccurate. A non-linear energy model, in

order to be accurate, must employ non-additive model variables in addi-

tion to PMCs.

145

5.5. SUMMARY

5.5 Summary

Accurate and reliable measurement of energy consumption is essential to en-

ergy optimization at an application level. Energy predictive modelling using

performance monitoring counters (PMCs) emerged as a promising approach,

one of the main drivers being its ability to provide fine-grained component-level

decomposition of energy consumption. Because of a limited number of hard-

ware registers (3-4) dedicated to storing the PMCs, the selection of the best

set of PMCs for energy predictive models is crucial.

In this chapter, we compared two types of energy predictive models con-

structed from the same set of experimental data and at two levels, platform and

application. The first type contains linear regression (LR) models employing

PMCs selected using a theoretical model of the energy of computing, which is

the manifestation of the fundamental physical law of energy conservation. The

second type contains sophisticated statistical learning models, random for-

est (RF), and neural network (NN), that are constructed using PMCs selected

based on correlation and principal component analysis.

We demonstrated how the accuracy of LR models can be improved by

selecting PMCs based on a theoretical model of the energy of computing.

We compared the prediction accuracy of LR models with RF and NN models,

which are based on PMCs selected using correlation and principal component

analysis. We employed two different configurations of train and test datasets.

In the first configuration, the train and test datasets contain all the applications.

In the second configuration, the applications are split between the train and

test datasets. We showed that the average prediction accuracy of the best

LR model is almost the same in both the experimental configurations and its

average prediction accuracy is better than RF and NN models. This highlights

the consistent accuracy of LR models. The prediction accuracy of RF and

NN models is better in the second configuration than the first configuration. It

implies that RF and NN models memorize well the domain of inputs but are not

able to predict well and hence generalize well for a new set. This is because

they use PMC selection techniques that are domain oblivious and that do not

take into account the physical significance of the PMCs originating from the

146

5.5. SUMMARY

conservation of energy of computing.

We also studied application-specific energy predictive models. We experi-

mentally demonstrated that the use of highly additive PMCs results in notable

improvements in the average prediction accuracy of LR models when com-

pared to LR models employing non-additive PMCs. We concluded, therefore,

that a high positive correlation with dynamic energy consumption alone is not

sufficient to provide good prediction accuracy but should be combined with

selection criteria that take into account the physical significance of the PMCs

originating from fundamental laws such as energy conservation of computing.

Finally, we presented an experimental methodology to select a reliable subset

of four PMCs for constructing accurate application-specific online models. We

showed that the LR models perform better than RF and NN models.

Our results highlight two important points. First, the consistent accuracy of

LR models stress the importance of taking into account domain-specific knowl-

edge for model variable selection, in this case, the physical significance of the

PMCs originating from the conservation of energy of computing. Second, ac-

cording to the theory of energy predictive models for computing, any non-linear

energy model (in this case, the RF and NN models) employing PMCs only, will

be inconsistent and hence inherently inaccurate. A non-linear energy model,

in order to be accurate, must employ non-additive model variables in addition

to PMCs.

In our future work, we will explore methods to improve the prediction accu-

racy of energy predictive models that employ high-level model variables such

as the utilization rates of compute devices unlike PMCs which are pure counts.

147

Chapter 6

Conclusion

Modern computing platforms have evolved with increased complexities such

as high resource contention and non-uniform memory access. The energy

of computing is a serious environmental concern and mitigating it has be-

come an important technological challenge. Information and Communications

Technology (ICT) devices and systems are presently consuming about 2000

terawatt-hours (TWh) per year which is about 10% of the global electricity de-

mand. It has been predicted that computing systems and devices will consume

up to 50% of global electricity in 2030 with a contribution to greenhouse gas

emissions of 23%. Considering the unsustainable future predicted, energy

efficiency in ICT is becoming a grand technological challenge and is now a

first-class design constraint in all computing settings.

Energy optimization in computing is driven by innovations both at the

system-level and application-level. System-level optimization methods aim to

maximize the energy efficiency of the environment where the applications are

executed using techniques such as DVFS (dynamic voltage and frequency

scaling), Dynamic Power Management (DPM), and energy-aware scheduling.

Application-level optimization methods use application-level parameters and

models to maximize the energy efficiency of the applications. While the main-

stream approach is to minimize the energy of the operating environment and

is extensively researched, application-level energy optimization is compara-

tively understudied and forms the focus of this thesis. Accurate measurement

148

of energy consumption during an application execution is key to energy mini-

mization techniques at the software level. There are three mainstream meth-

ods for energy measurement: (a) System-level physical measurements using

external power meters, (b) Measurements using on-chip power sensors, and

(c) Energy predictive models. In this thesis, we first present a comprehensive

study on the accuracy of state-of-the-art energy measurement approaches

on multicore CPUs (Chapter 3). We demonstrated poor energy consumption

measurements from on-chip sensors when compared with the ground-truth

system-level energy measurements using external power meters. We also

showed that energy predictive models based on PMCs are plagued by poor

accuracy. This thesis first explores the causes of the inaccuracy of linear en-

ergy predictive models.

We discovered that existing techniques for the selection of model variables

in energy predictive models have not considered one fundamental property of

predictor variables that should have been considered in the first place to re-

move PMCs unfit for modeling energy. We call it the property of additivity of

PMCs. It is based on the experimental observation that the energy consump-

tion of a serial execution of two applications is the sum of energy consumptions

observed for the individual execution of each application. A linear energy pre-

dictive model is consistent if and only if its predictor variables are additive in

the sense that the vector of predictor variables for a serial execution of two ap-

plications is the sum of vectors for the individual execution of each application.

It must also have non-negative coefficients and zero intercept when modelling

the dynamic energy consumption.

In Chapter 4, we first studied the additivity of PMCs offered by two popular

tools, Likwid and PAPI, using a detailed statistical experimental methodology

on a modern Intel Haswell multicore server CPU. We showed that many PMCs

in Likwid and PAPI are non-additive and that some of these PMCs are key pre-

dictor variables in energy predictive models thereby bringing into question the

reliability and reported prediction accuracy of these models. We showed that

a PMC can be non-additive with error as high as 3075% and there are PMCs

where the error is over 100%. We discovered that the number of non-additive

PMCs rises with an increase in the number of cores employed in the applica-

149

tion. We consider this to be an inherent trait of modern multicore computing

platforms because of severe resource contention and non-uniform memory

access (NUMA). We then summarized and generalized the assumptions be-

hind the existing work on PMC-based energy predictive modelling. We used

a model-theoretic approach to formulate the assumed properties of the ex-

isting models in a mathematical form. We further extended the formalism by

adding properties, heretofore unconsidered, that are basic implications of the

universal energy conservation law. The new properties are intuitive and have

been experimentally validated. The extended formalism defined our theory of

energy of computing. Using the theory, we proved that a consistent energy

predictive model is linear if and only if each PMC variable is additive. The

implications are unified in a consistency test, which contains a suite of prop-

erties that include determinism, reproducibility, and additivity to select model

variables and constraints for model coefficients.

We experimentally showed that contravening the requirements of the test

can worsen the prediction accuracy of linear energy predictive models. We

explored the construction of most accurate PMC-based application-specific

models on our platform. We studied the prediction accuracy of platform-level

and socket-level energy predictive models for data-parallel applications execut-

ing on a multi-socket multicore CPU platform where the sockets are indepen-

dently powered. Our results demonstrated that socket-level models employing

socket-level PMCs, which represent the resource utilization of individually pow-

ered components, yield a more accurate energy predictive model. We studied

the optimization of a parallel scientific application for dynamic energy using

IntelRAPL and power meters. We demonstrated that a significant amount of

energy (up to 84% for applications used in the experiments) is lost by using

IntelRAPL most likely because it does not take into account the properties of

the theory of energy predictive models for computing.

Finally, In Chapter 5 we presented the first comprehensive study of tech-

niques for energy predictive modelling using PMCs on modern multicore

CPUs. We compared two types of energy predictive models constructed from

the same set of experimental data and at two levels, platform, and application.

The first type contains linear regression (LR) models employing PMCs se-

150

lected using a theoretical model of the energy of computing, which is the man-

ifestation of the fundamental physical law of energy conservation. The second

type contains sophisticated statistical learning models, random forest (RF),

and neural network (NN), that are constructed using PMCs selected based on

correlation and principal component analysis. We demonstrated how the accu-

racy of platform-level LR models can be improved by selecting PMCs based on

a property of additivity. We discovered that the CPU-centric operations such

as floating-point operations and core micro-operations are dominant contribu-

tors towards the dynamic energy consumption and that memory-centric oper-

ations make insignificant contributions towards dynamic energy consumption

on our platforms. Therefore, we do not use memory PMCs to train the models.

We showed that the average prediction accuracies of LR models are better

than RF and NN models. We demonstrated that this is because RF and NN

models use PMC selection techniques that are domain oblivious and that do

not take into account the physical significance of the PMCs originating from

the conservation of energy of computing. We concluded from the study of

application-specific energy predictive models that a high positive correlation

with dynamic energy consumption alone is not sufficient to provide good pre-

diction accuracy but should be combined with selection criteria that take into

account the physical significance of the PMCs originating from fundamental

laws such as energy conservation of computing.

The potential future work, which could be relevant in the extension of this

thesis, includes:

1. Using the theory of energy predictive models for computing, develop and

analyze the energy predictive models for a range of CPU architectures

such as AMD, ARM, and MIPS, etc.

2. Using the theory of energy predictive models for computing, develop and

analyze the energy predictive models for accelerators such as GPUs,

Xeon Phis, and FPGAs, etc.

3. Developing and mathematically formulating a theory of energy predictive

models for computing for non-linear energy predictive models.

151

4. Extending the methodology to select the model variables for energy pre-

dictions using high-level metrics.

5. Exploring the methods to improve the prediction accuracy of energy pre-

dictive models that employ high-level model variables based on the uti-

lization rates of computing devices unlike PMCs, that are pure counts.

6. Studying the accuracy of platform-level and application-specific energy

predictive models using pure CPU and memory utilization as model vari-

ables, high-level measurements from on-chip power sensors, high-level

operating systems, and application parameters such as the number of

instructions and problem sizes, etc.

7. Extension SLOPE-PMC to provide support for automated collection of

PMCs for GPUs and other accelerators.

8. Extension of techniques to accurately and reliably build energy predic-

tive models for workload-parallel applications executing on a multi-socket

computing platform.

In closing, our theory of energy predictive models for computing has

demonstrated the importance of using the physical significance of model vari-

ables for their employment in energy consumption models to achieve accuracy

and reliability. We have demonstrated the potential of this novel approach; the

challenge now is to ensure that this potential is realised.

152

Bibliography

[1] A. Andrae and T. Edler, “On global electricity usage of communication

technology: Trends to 2030,” Challenges, vol. 6, p. 117–157, Apr 2015.

[2] G. E. Moore, “Cramming more components onto integrated circuits,

reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114

ff.,” IEEE Solid-State Circuits Society Newsletter, vol. 11, no. 3, pp. 33–

35, 2006.

[3] R. H. Dennard, F. H. Gaensslen, H. Yu, V. L. Rideout, E. Bassous,

and A. R. LeBlanc, “Design of ion-implanted mosfet’s with very small

physical dimensions,” IEEE Journal of Solid-State Circuits, vol. 9, no. 5,

pp. 256–268, 1974.

[4] M. Cierniak, M. J. Zaki, and W. Li, “Compile-time scheduling algorithms

for a heterogeneous network of workstations,” The Computer Journal,

vol. 40, no. 6, pp. 356–372, 1997.

[5] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert, “Matrix multipli-

cation on heterogeneous platforms,” Parallel and Distributed Systems,

IEEE Transactions on, vol. 12, no. 10, pp. 1033–1051, 2001.

[6] A. Kalinov and A. Lastovetsky, “Heterogeneous distribution of compu-

tations solving linear algebra problems on networks of heterogeneous

computers,” J. Parallel Distrib. Comput., vol. 61, Apr. 2001.

[7] A. L. Lastovetsky and R. Reddy, “Data partitioning with a realistic per-

formance model of networks of heterogeneous computers,” in Parallel

153

BIBLIOGRAPHY

and Distributed Processing Symposium, 2004. Proceedings. 18th Inter-

national, p. 104, IEEE, 2004.

[8] A. Lastovetsky and R. Reddy, “Data partitioning with a functional per-

formance model of heterogeneous processors,” International Journal of

High Performance Computing Applications, vol. 21, no. 1, pp. 76–90,

2007.

[9] A. Lastovetsky, L. Szustak, and R. Wyrzykowski, “Model-based opti-

mization of EULAG kernel on Intel Xeon Phi through load imbalancing,”

IEEE Transactions on Parallel and Distributed Systems, vol. 28, pp. 787–

797, March 2017.

[10] A. Lastovetsky and R. Reddy, “New model-based methods and algo-

rithms for performance and energy optimization of data parallel applica-

tions on homogeneous multicore clusters,” IEEE Transactions on Paral-

lel and Distributed Systems, vol. 28, no. 4, pp. 1119–1133, 2017.

[11] OpenBLAS, “OpenBLAS: An optimized BLAS library,” 2016.

[12] FFTW, “FFTW: A fast, free c FFT library,” 2016.

[13] A. Lastovetsky and R. Reddy, “Data distribution for dense factorization

on computers with memory heterogeneity,” Parallel Computing, vol. 33,

Dec. 2007.

[14] A. Ilić, F. Pratas, P. Trancoso, and L. Sousa, “High-performance comput-

ing on heterogeneous systems: Database queries on CPU and GPU,”

High Performance Scientific Computing with Special Emphasis on Cur-

rent Capabilities and Future Perspectives, pp. 202–222, 2010.

[15] D. Clarke, A. Lastovetsky, and V. Rychkov, “Dynamic load balancing of

parallel computational iterative routines on highly heterogeneous HPC

platforms,” Parallel Processing Letters, vol. 21, no. 02, pp. 195–217,

2011.

154

BIBLIOGRAPHY

[16] D. Clarke, A. L. Lastovetsky, and V. Rychkov, “Column-based matrix par-

titioning for parallel matrix multiplication on heterogeneous processors

based on functional performance models,” in Euro-Par 2011: Parallel

Processing Workshops, vol. 7155 of Lecture Notes in Computer Sci-

ence, Springer-Verlag, 2012.

[17] X. Liu, Z. Zhong, and K. Xu, “A hybrid solution method for CFD appli-

cations on GPU-accelerated hybrid HPC platforms,” Future Generation

Computer Systems, vol. 56, pp. 759–765, 2016.

[18] M. Radmanović, D. Gajić, and R. Stanković, “Efficient computation of

galois field expressions on hybrid CPU-GPU platforms.,” Journal of

Multiple-Valued Logic & Soft Computing, vol. 26, 2016.

[19] A. Ilic and L. Sousa, “Simultaneous multi-level divisible load balancing

for heterogeneous desktop systems,” in Parallel and Distributed Pro-

cessing with Applications (ISPA), 2012 IEEE 10th International Sym-

posium on, pp. 683–690, IEEE, 2012.

[20] J. Colaço, A. Matoga, A. Ilic, N. Roma, P. Tomás, and R. Chaves, “Trans-

parent application acceleration by intelligent scheduling of shared library

calls on heterogeneous systems,” in Parallel Processing and Applied

Mathematics, pp. 693–703, Springer, 2013.

[21] V. Cardellini, A. Fanfarillo, and S. Filippone, “Heterogeneous sparse ma-

trix computations on hybrid GPU/CPU platforms.,” in PARCO, pp. 203–

212, 2013.

[22] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful

visual performance model for multicore architectures,” Communications

of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[23] N. Jones, “How to stop data centres from gobbling up the world’s elec-

tricity,” Nature, vol. 561, pp. 163–166, 2018.

[24] L. A. Barroso and U. Hölzle, “The case for energy-proportional comput-

ing,” Computer, no. 12, pp. 33–37, 2007.

155

BIBLIOGRAPHY

[25] DOE, “The opportunities and challenges of exascale computing,” 2010.

[26] A. Chakrabarti, S. Parthasarathy, and C. Stewart, “A pareto framework

for data analytics on heterogeneous systems: Implications for green en-

ergy usage and performance,” in Parallel Processing (ICPP), 2017 46th

International Conference on, pp. 533–542, IEEE, 2017.

[27] R. Reddy and A. Lastovetsky, “Bi-objective optimization of data-parallel

applications on homogeneous multicore clusters for performance and

energy,” IEEE Transactions on Computers, vol. 64, no. 2, pp. 160–177,

2018.

[28] R. Reddy Manumachu and A. L. Lastovetsky, “Design of self-adaptable

data parallel applications on multicore clusters automatically optimized

for performance and energy through load distribution,” Concurrency and

Computation: Practice and Experience, vol. 31, no. 4, p. e4958, 2019.

[29] H. Khaleghzadeh, M. Fahad, A. Shahid, R. Reddy, and A. Lastovet-

sky, “Bi-objective optimization of data-parallel applications on hetero-

geneous HPC platforms for performance and energy through workload

distribution,” CoRR, vol. abs/1907.04080, 2019.

[30] E. Rotem, A. Naveh, A. Ananthakrishnan, E. Weissmann, and D. Ra-

jwan, “Power-Management architecture of the intel microarchitecture

Code-Named sandy bridge,” IEEE Micro, vol. 32, pp. 20–27, March

2012.

[31] Nvidia, “Nvidia management library: NVML reference manual,” 10 2018.

[32] I. Corporation, “Intel xeon phi coprocessor system software developers

guide,” 06 2014.

[33] C. Gough, I. Steiner, and W. Saunders, Energy Efficient Servers

Blueprints for Data Center Optimization. Apress, 2015.

[34] K. N. Khan, M. Hirki, T. Niemi, J. K. Nurminen, and Z. Ou, “Rapl in

action: Experiences in using rapl for power measurements,” ACM Trans.

Model. Perform. Eval. Comput. Syst., vol. 3, pp. 9:1–9:26, Mar. 2018.

156

BIBLIOGRAPHY

[35] D. Hackenberg, T. Ilsche, R. Schöne, D. Molka, M. Schmidt, and W. E.

Nagel, “Power measurement techniques on standard compute nodes: A

quantitative comparison,” in Performance analysis of systems and soft-

ware (ISPASS), 2013 IEEE international symposium on, pp. 194–204,

IEEE, 2013.

[36] M. Fahad, A. Shahid, R. R. Manumachu, and A. Lastovetsky, “A com-

parative study of methods for measurement of energy of computing,”

Energies, vol. 12, no. 11, 2019.

[37] PAPI, “Performance application programming interface 5.4.1,” 2015.

[38] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight performance-

oriented tool suite for x86 multicore environments,” in Parallel Pro-

cessing Workshops (ICPPW), 2010 39th International Conference on,

pp. 207–216, IEEE, 2010.

[39] Likwid, “Architecture specific notes for Intel Haswell,” 2017.

[40] K. O’Brien, I. Pietri, R. Reddy, A. Lastovetsky, and R. Sakellariou, “A

survey of power and energy predictive models in HPC systems and ap-

plications,” ACM Computing Surveys, vol. 50, no. 3, 2017.

[41] W. L. Bircher and L. K. John, “Complete system power estimation us-

ing processor performance events,” IEEE Transactions on Computers,

vol. 61, pp. 563–577, Apr. 2012.

[42] P. Gschwandtner, M. Knobloch, B. Mohr, D. Pleiter, and T. Fahringer,

“Modeling CPU energy consumption of hpc applications on the IBM

POWER7,” in Parallel, Distributed and Network-Based Processing

(PDP), 2014 22nd Euromicro International Conference on, pp. 536–543,

IEEE, 2014.

[43] J. Haj-Yihia, A. Yasin, Y. B. Asher, and A. Mendelson, “Fine-grain power

breakdown of modern out-of-order cores and its implications on skylake-

based systems,” ACM Transactions on Architecture and Code Optimiza-

tion (TACO), vol. 13, no. 4, p. 56, 2016.

157

BIBLIOGRAPHY

[44] K. Singh, M. Bhadauria, and S. A. McKee, “Real time power estima-

tion and thread scheduling via performance counters,” ACM SIGARCH

Computer Architecture News, vol. 37, no. 2, pp. 46–55, 2009.

[45] B. Goel, S. A. McKee, R. Gioiosa, K. Singh, M. Bhadauria, and M. Ce-

sati, “Portable scalable per-core power estimation for intelligent resource

management,” in Portable, Scalable, per-Core Power Estimation for In-

telligent Resource Management, Green Computing Conference, 2010

International, 2010-08-16 2010.

[46] C. Lively, X. Wu, V. Taylor, S. Moore, H.-C. Chang, C.-Y. Su, and

K. Cameron, “Power-aware predictive models of hybrid (mpi/openmp)

scientific applications on multicore systems,” Computer Science-

Research and Development, vol. 27, no. 4, pp. 245–253, 2012.

[47] S. Song, C. Su, B. Rountree, and K. W. Cameron, “A simplified and

accurate model of power-performance efficiency on emergent GPU ar-

chitectures,” in 27th IEEE International Parallel & Distributed Processing

Symposium (IPDPS), pp. 673–686, IEEE Computer Society, 2013.

[48] M. Witkowski, A. Oleksiak, T. Piontek, and J. Weglarz, “Practical power

consumption estimation for real life HPC applications,” Future Gener.

Comput. Syst., vol. 29, Jan. 2013.

[49] M. Jarus, A. Oleksiak, T. Piontek, and J. Węglarz, “Runtime power usage

estimation of HPC servers for various classes of real-life applications,”

Future Generation Computer Systems, vol. 36, 2014.

[50] X. Wu, V. Taylor, J. Cook, and P. J. Mucci, “Using Performance-Power

modeling to improve energy efficiency of HPC applications,” Computer,

vol. 49, no. 10, pp. 20–29, 2016.

[51] M. Chadha, T. Ilsche, M. Bielert, and W. E. Nagel, “A statistical approach

to power estimation for x86 processors,” in Parallel and Distributed Pro-

cessing Symposium Workshops (IPDPSW), 2017 IEEE International,

pp. 1012–1019, IEEE, 2017.

158

BIBLIOGRAPHY

[52] D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan, “Full-

system power analysis and modeling for server environments,” in In

Proceedings of Workshop on Modeling, Benchmarking, and Simulation,

pp. 70–77, 2006.

[53] J. C. McCullough, Y. Agarwal, J. Chandrashekar, S. Kuppuswamy, A. C.

Snoeren, and R. K. Gupta, “Evaluating the effectiveness of model-

based power characterization,” in Proceedings of the 2011 USENIX

Conference on USENIX Annual Technical Conference, USENIXATC’11,

USENIX Association, 2011.

[54] A. Shahid, M. Fahad, R. Reddy, and A. Lastovetsky, “Additivity: A selec-

tion criterion for performance events for reliable energy predictive mod-

eling,” Supercomput. Front. Innov.: Int. J., vol. 4, pp. 50–65, Dec. 2017.

[55] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Optimizing

NUCA organizations and wiring alternatives for large caches with CACTI

6.0,” in Proceedings of the 40th Annual IEEE/ACM International Sympo-

sium on Microarchitecture, MICRO 40, IEEE Computer Society, 2007.

[56] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and W. Ye,

“Energy-driven integrated hardware-software optimizations using Sim-

plePower,” in Proceedings of the 27th Annual International Symposium

on Computer Architecture, ISCA ’00, ACM, 2000.

[57] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A framework for

architectural-level power analysis and optimizations,” in Proceedings of

the 27th Annual International Symposium on Computer Architecture,

ISCA ’00, ACM, 2000.

[58] D. Brooks, M. Martonosi, J.-D. Wellman, and P. Bose, “Power-

performance modeling and tradeoff analysis for a high end microproces-

sor,” in Proceedings of the First International Workshop on Power-Aware

Computer Systems-Revised Papers, PACS ’00, Springer-Verlag, 2001.

159

BIBLIOGRAPHY

[59] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.

Jouppi, “The McPAT framework for multicore and manycore architec-

tures: Simultaneously modeling power, area, and timing,” ACM Trans.

Archit. Code Optim., vol. 10, no. 1, 2013.

[60] S. L. Xi, H. Jacobson, P. Bose, G.-Y. Wei, and D. Brooks, “Quantifying

sources of error in McPAT and potential impacts on architectural stud-

ies,” in High Performance Computer Architecture (HPCA), 2015 IEEE

21st International Symposium on, pp. 577–589, IEEE, 2015.

[61] M. Fahad, A. Shahid, R. R. Manumachu, and A. Lastovetsky, “Accu-

rate energy modelling of hybrid parallel applications on modern hetero-

geneous computing platforms using system-level measurements,” IEEE

Access, vol. 8, pp. 93793–93829, 2020.

[62] F. Almeida, M. D. Assuncao, J. Barbosa, V. Blanco, I. Brandic,

G. Da Costa, M. F. Dolz, A. C. Elster, M. Jarus, H. D. Karatza, et al.,

“Energy monitoring as an essential building block towards sustainable

ultrascale systems,” Sustainable Computing: Informatics and Systems,

vol. 17, pp. 27–42, 2018.

[63] M. Burtscher, I. Zecena, and Z. Zong, “Measuring gpu power with the

k20 built-in sensor,” in Proceedings of Workshop on General Purpose

Processing Using GPUs, GPGPU-7, (New York, NY, USA), pp. 28:28–

28:36, ACM, 2014.

[64] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart, and

R. Geyer, “An energy efficiency feature survey of the intel haswell pro-

cessor,” in 2015 IEEE International Parallel and Distributed Processing

Symposium Workshop, pp. 896–904, May 2015.

[65] A. Cabrera, F. Almeida, and V. Blanco, “Eml, an energy measurement

library,” in IFIP WG 7.3 Performance 2013 31 st International Sympo-

sium on Computer Performance, Modeling, Measurements and Evalua-

tion 2013 Student Poster Abstracts September 24-26, Vienna, Austria,

p. 5, 2013.

160

BIBLIOGRAPHY

[66] A. Cabrera, F. Almeida, J. Arteaga, and V. Blanco, “Energy measure-

ment library (eml) usage and overhead analysis,” in 2015 23rd Eu-

romicro International Conference on Parallel, Distributed, and Network-

Based Processing, pp. 554–558, IEEE, 2015.

[67] I. Corporation, “Intel® manycore platform software stack (Intel MPSS),”

06 2014.

[68] A. M. Devices, “Bios and kernel developer’s guide (bkdg) for amd family

15h models 00h-0fh processors,” 2012.

[69] S. Roy, A. Rudra, and A. Verma, “An energy complexity model for algo-

rithms,” in Proceedings of the 4th Conference on Innovations in Theo-

retical Computer Science, ITCS ’13, (New York, NY, USA), pp. 283–304,

ACM, 2013.

[70] A. Lewis, S. Ghosh, and N.-F. Tzeng, “Run-time energy consumption

estimation based on workload in server systems,” in Proceedings of

the 2008 Conference on Power Aware Computing and Systems, Hot-

Power’08, (Berkeley, CA, USA), pp. 4–4, USENIX Association, 2008.

[71] R. Basmadjian, N. Ali, F. Niedermeier, H. de Meer, and G. Giuliani, “A

methodology to predict the power consumption of servers in data cen-

tres,” in Proceedings of the 2Nd International Conference on Energy-

Efficient Computing and Networking, e-Energy ’11, (New York, NY,

USA), pp. 1–10, ACM, 2011.

[72] T. Heath, B. Diniz, B. Horizonte, E. V. Carrera, and R. Bianchini, “Energy

conservation in heterogeneous server clusters,” in 10th ACM SIGPLAN

symposium on Principles and practice of parallel programming (PPoPP),

pp. 186–195, ACM, 2005.

[73] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a

warehouse-sized computer,” in 34th Annual International Symposium on

Computer architecture, pp. 13–23, ACM, 2007.

161

BIBLIOGRAPHY

[74] A. Kansal and F. Zhao, “Fine-grained energy profiling for power-aware

application design,” ACM SIGMETRICS Performance Evaluation Re-

view, vol. 36, p. 26, Aug. 2008.

[75] X. Feng, R. Ge, and K. W. Cameron, “Power and energy profiling of

scientific applications on distributed systems,” in Parallel and Distributed

Processing Symposium, 2005. Proceedings. 19th IEEE International,

pp. 34–34, IEEE, 2005.

[76] T. Li and L. K. John, “Run-time modeling and estimation of operating

system power consumption,” SIGMETRICS Perform. Eval. Rev., vol. 31,

pp. 160–171, June 2003.

[77] S. Rivoire, P. Ranganathan, and C. Kozyrakis, “A comparison of high-

level full-system power models,” in Proceedings of the 2008 Conference

on Power Aware Computing and Systems, HotPower’08, USENIX Asso-

ciation, 2008.

[78] S. Rivoire, “Models and metrics for energy-efficient computer systems.,”

in PhD Thesis, Stanford University, Stanford, California, 2008.

[79] H. Wang, Q. Jing, R. Chen, B. He, Z. Qian, and L. Zhou, “Distributed

systems meet economics: pricing in the cloud,” in Proceedings of the

2nd USENIX conference on Hot topics in cloud computing, USENIX As-

sociation, 2010.

[80] W. Dargie, “A stochastic model for estimating the power consumption of

a processor,” IEEE Transactions on Computers, vol. 64, no. 5, 2015.

[81] G. Jung, M. A. Hiltunen, K. R. Joshi, R. D. Schlichting, and C. Pu, “Mis-

tral: Dynamically managing power, performance, and adaptation cost in

cloud infrastructures,” in Distributed Computing Systems (ICDCS), 2010

IEEE 30th International Conference on, pp. 62–73, IEEE, 2010.

[82] CUPTI, “CUDA profiling tools interface,” 2017.

[83] IntelPCM, “Intel performance counter monitor - a better way to measure

CPU utilization.,” 2012.

162

BIBLIOGRAPHY

[84] P. Wiki, “perf: Linux profiling with performance counters,” 2017.

[85] I. Kadayif, T. Chinoda, M. Kandemir, N. Vijaykirsnan, M. J. Irwin, and

A. Sivasubramaniam, “vec: virtual energy counters,” in Proceedings of

the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for

software tools and engineering, pp. 28–31, 2001.

[86] F. Bellosa, “The benefits of event: driven energy accounting in power-

sensitive systems,” in Proceedings of the 9th workshop on ACM

SIGOPS European workshop: beyond the PC: new challenges for the

operating system, ACM, 2000.

[87] C. Isci and M. Martonosi, “Runtime power monitoring in high-end pro-

cessors: Methodology and empirical data,” in 36th annual IEEE/ACM

International Symposium on Microarchitecture, p. 93, IEEE Computer

Society, 2003.

[88] B. C. Lee and D. M. Brooks, “Accurate and efficient regression model-

ing for microarchitectural performance and power prediction,” SIGARCH

Comput. Archit. News, vol. 34, pp. 185–194, Oct. 2006.

[89] M. D. Powell, A. Biswas, J. S. Emer, S. S. Mukherjee, B. R. Sheikh, and

S. Yardi, “CAMP: A technique to estimate per-structure power at run-

time using a few simple parameters,” in 2009 IEEE 15th International

Symposium on High Performance Computer Architecture, pp. 289–300,

Feb 2009.

[90] R. Bertran, M. Gonzalez, X. Martorell, N. Navarro, and E. Ayguade,

“Decomposable and responsive power models for multicore processors

using performance counters,” in Proceedings of the 24th ACM Interna-

tional Conference on Supercomputing, pp. 147–158, ACM, 2010.

[91] H. Hong, Sunpyand Kim, “An integrated GPU power and performance

model,” SIGARCH Comput. Archit. News, vol. 38, no. 3, 2010.

[92] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka,

“Statistical power modeling of GPU kernels using performance coun-

163

BIBLIOGRAPHY

ters,” in International Green Computing Conference and Workshops

(IGCC), IEEE, 2010.

[93] Y. S. Shao and D. Brooks, “Energy characterization and instruction-

level energy model of Intel’s Xeon Phi processor,” in Proceedings of the

2013 International Symposium on Low Power Electronics and Design,

ISLPED ’13, IEEE Press, 2013.

[94] Z. Al-Khatib and S. Abdi, “Operand-value-based modeling of dynamic

energy consumption of soft processors in FPGA,” in International Sym-

posium on Applied Reconfigurable Computing, pp. 65–76, Springer,

2015.

[95] V. Bui, B. Norris, K. Huck, L. C. McInnes, L. Li, O. Hernandez, and

B. Chapman, “A component infrastructure for performance and power

modeling of parallel scientific applications,” in Proceedings of the 2008

compFrame/HPC-GECO Workshop on Component Based High Perfor-

mance, CBHPC ’08, pp. 6:1–6:11, ACM, 2008.

[96] J. Dongarra, H. Ltaief, P. Luszczek, and V. Weaver, “Energy footprint of

advanced dense numerical linear algebra using tile algorithms on mul-

ticore architecture,” in The 2nd International Conference on Cloud and

Green Computing, November 2012.

[97] A. Tiwari, M. A. Laurenzano, L. Carrington, and A. Snavely, “Mod-

eling power and energy usage of HPC kernels,” in Parallel and Dis-

tributed Processing Symposium Workshops & PhD Forum (IPDPSW),

2012 IEEE 26th International, pp. 990–998, IEEE, 2012.

[98] A. Cabrera, F. Almeida, V. Blanco, and D. Gimenez, “Analytical modeling

of the energy consumption for the high performance linpack,” in 2013

21st Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing, pp. 343–350, IEEE, 2013.

[99] C. Mobius, W. Dargie, and A. Schill, “Power consumption estimation

models for processors, virtual machines, and servers,” IEEE Transac-

tions on Parallel and Distributed Systems, vol. 25, no. 6, 2014.

164

BIBLIOGRAPHY

[100] M. Dayarathna, Y. Wen, and R. Fan, “Data center energy consumption

modeling: A survey,” IEEE Communications Surveys & Tutorials, vol. 18,

no. 1, pp. 732–794, 2016.

[101] R. A. Bridges, N. Imam, and T. M. Mintz, “Understanding gpu power: A

survey of profiling, modeling, and simulation methods,” ACM Comput.

Surv., vol. 49, no. 3, 2016.

[102] F. Almeida, J. Arteaga, V. Blanco, and A. Cabrera, “Energy measure-

ment tools for ultrascale computing: A survey,” Supercomputing frontiers

and innovations, vol. 2, no. 2, pp. 64–76, 2015.

[103] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bian-

chini, “Coscale: Coordinating cpu and memory system dvfs in server

systems,” in Proceedings of the 2012 45th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, pp. 143–154, IEEE Computer

Society, 2012.

[104] Z. Lai, K. T. Lam, C.-L. Wang, J. Su, Y. Yan, and W. Zhu, “Latency-aware

dynamic voltage and frequency scaling on many-core architectures for

data-intensive applications,” in 2013 International Conference on Cloud

Computing and Big Data, pp. 78–83, IEEE, 2013.

[105] G. Chen, K. Huang, and A. Knoll, “Energy optimization for real-time

multiprocessor system-on-chip with optimal dvfs and dpm combination,”

ACM Transactions on Embedded Computing Systems (TECS), vol. 13,

no. 3s, p. 111, 2014.

[106] A. K. Datta and R. Patel, “Cpu scheduling for power/energy manage-

ment on multicore processors using cache miss and context switch

data,” IEEE Transactions on Parallel and Distributed Systems, vol. 25,

no. 5, pp. 1190–1199, 2013.

[107] N. B. Rizvandi, J. Taheri, and A. Y. Zomaya, “Some observations on

optimal frequency selection in dvfs-based energy consumption mini-

mization,” Journal of Parallel and Distributed Computing, vol. 71, no. 8,

pp. 1154–1164, 2011.

165

BIBLIOGRAPHY

[108] S. Yang, R. A. Shafik, G. V. Merrett, E. Stott, J. M. Levine, J. Davis,

and B. M. Al-Hashimi, “Adaptive energy minimization of embedded het-

erogeneous systems using regression-based learning,” in 2015 25th In-

ternational Workshop on Power and Timing Modeling, Optimization and

Simulation (PATMOS), pp. 103–110, IEEE, 2015.

[109] F. P. Miller, A. F. Vandome, and J. McBrewster, “Advanced configuration

and power interface: Open standard, operating system, power man-

agement, cross-platform, intel corporation, microsoft, toshiba,... sleep

mode, hibernate (os feature), synonym,” 2009.

[110] W. L. Bircher and L. K. John, “Analysis of dynamic power management

on multi-core processors,” in Proceedings of the 22nd annual interna-

tional conference on Supercomputing, pp. 327–338, ACM, 2008.

[111] K. Huang, L. Santinelli, J.-J. Chen, L. Thiele, and G. C. Buttazzo, “Adap-

tive power management for real-time event streams,” in Proceedings of

the 2010 Asia and South Pacific Design Automation Conference, pp. 7–

12, IEEE Press, 2010.

[112] E.-Y. Chung, L. Benini, and G. De Micheli, “Dynamic power

management using adaptive learning tree,” in Proceedings of the

1999 IEEE/ACM international conference on Computer-aided design,

pp. 274–279, IEEE Press, 1999.

[113] A. Beloglazov and R. Buyya, “Energy efficient resource management

in virtualized cloud data centers,” in Proceedings of the 2010 10th

IEEE/ACM international conference on cluster, cloud and grid comput-

ing, pp. 826–831, IEEE Computer Society, 2010.

[114] W.-K. Lee, S.-W. Lee, and W.-O. Siew, “Hybrid model for dynamic power

management,” IEEE Transactions on Consumer Electronics, vol. 55,

no. 2, pp. 656–664, 2009.

[115] L. Niu and G. Quan, “Reducing both dynamic and leakage energy con-

sumption for hard real-time systems,” in Proceedings of the 2004 inter-

166

BIBLIOGRAPHY

national conference on Compilers, architecture, and synthesis for em-

bedded systems, pp. 140–148, ACM, 2004.

[116] J. Trajkovic, A. V. Veidenbaum, and A. Kejariwal, “Improving sdram ac-

cess energy efficiency for low-power embedded systems,” ACM Trans-

actions on Embedded Computing Systems (TECS), vol. 7, no. 3, p. 24,

2008.

[117] S. Song, C.-Y. Su, R. Ge, A. Vishnu, and K. W. Cameron, “Iso-energy-

efficiency: An approach to power-constrained parallel computation,” in

2011 IEEE International Parallel & Distributed Processing Symposium,

pp. 128–139, IEEE, 2011.

[118] J. H. Ahn, J. Leverich, R. Schreiber, and N. P. Jouppi, “Multicore

dimm: An energy efficient memory module with independently con-

trolled drams,” IEEE Computer Architecture Letters, vol. 8, no. 1, pp. 5–

8, 2008.

[119] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis, “Power aware page alloca-

tion,” ACM Sigplan Notices, vol. 35, no. 11, pp. 105–116, 2000.

[120] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini, “Mem-

scale: active low-power modes for main memory,” in ACM SIGARCH

Computer Architecture News, vol. 39, pp. 225–238, ACM, 2011.

[121] J. Lin, H. Zheng, Z. Zhu, E. Gorbatov, H. David, and Z. Zhang, “Software

thermal management of dram memory for multicore systems,” ACM SIG-

METRICS Performance Evaluation Review, vol. 36, no. 1, pp. 337–348,

2008.

[122] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu, “Memory

power management via dynamic voltage/frequency scaling,” in Proceed-

ings of the 8th ACM international conference on Autonomic computing,

pp. 31–40, ACM, 2011.

[123] J. Demmel, A. Gearhart, B. Lipshitz, and O. Schwartz, “Perfect strong

scaling using no additional energy,” in 2013 IEEE 27th International

167

BIBLIOGRAPHY

Symposium on Parallel and Distributed Processing, pp. 649–660, IEEE,

2013.

[124] A. Cabrera, A. Acosta, F. Almeida, and V. Blanco, “A heuristic technique

to improve energy efficiency with dynamic load balancing,” The Journal

of Supercomputing, vol. 75, no. 3, pp. 1610–1624, 2019.

[125] J. W. Choi, D. Bedard, R. Fowler, and R. Vuduc, “A roofline model of

energy,” in 2013 IEEE 27th International Symposium on Parallel and

Distributed Processing, pp. 661–672, IEEE, 2013.

[126] F. Alessi, P. Thoman, G. Georgakoudis, T. Fahringer, and D. S.

Nikolopoulos, “Application-level energy awareness for openmp,” in In-

ternational Workshop on OpenMP, pp. 219–232, Springer, 2015.

[127] V. R. Silva, A. Furtunato, K. Georgiou, K. Eder, and S. Xavier-de Souza,

“Energy-optimal configurations for single-node hpc applications,” arXiv

preprint arXiv:1805.00998, 2018.

[128] H. Wang, V. Sathish, R. Singh, M. J. Schulte, and N. S. Kim, “Work-

load and power budget partitioning for single-chip heterogeneous pro-

cessors,” in Proceedings of the 21st international conference on Parallel

architectures and compilation techniques, pp. 401–410, ACM, 2012.

[129] A. L. Lastovetsky, L. Szustak, and R. Wyrzykowski, “Model-based op-

timization of MPDATA on Intel Xeon Phi through load imbalancing,”

CoRR, vol. abs/1507.01265, 2015.

[130] A. Lastovetsky and R. Reddy, “New model-based methods and algo-

rithms for performance and energy optimization of data parallel applica-

tions on homogeneous multicore clusters,” IEEE Transactions on Paral-

lel and Distributed Systems, vol. 28, no. 4, pp. 1119–1133, 2017.

[131] H. Khaleghzadeh, R. R. Manumachu, and A. Lastovetsky, “A novel data-

partitioning algorithm for performance optimization of data-parallel appli-

cations on heterogeneous HPC platforms,” IEEE Transactions on Paral-

lel and Distributed Systems, vol. 29, pp. 2176–2190, Oct 2018.

168

BIBLIOGRAPHY

[132] HCL, “HCLWattsUp: API for power and energy measurements us-

ing WattsUp Pro Meter http://csgitlab.ucd.ie/hcl/hclwattsup,”

2016.

[133] J. Mair, Z. Huang, and D. Eyers, “Manila: Using a densely populated

pmc-space for power modelling within large-scale systems,” Parallel

Computing, vol. 82, pp. 37–56, 2019.

[134] Z. Zhou, J. H. Abawajy, F. Li, Z. Hu, M. U. Chowdhury, A. Alelaiwi, and

K. Li, “Fine-grained energy consumption model of servers based on task

characteristics in cloud data center,” IEEE access, vol. 6, pp. 27080–

27090, 2018.

[135] A. Shahid, M. Fahad, R. Reddy Manumachu, and A. Lastovetsky, “En-

ergy of computing on multicore cpus: Predictive models and energy

conservation law,” arXiv, 2019.

[136] Intel Optimzed HPCG, “Overview of the intel optimized hpcg https:

//software.intel.com/en-us/node/599524.”

[137] A. Waterland, “Stress https://people.seas.harvard.edu/{~}apw/

stress/,” 2001.

[138] M. F. Dolz, J. Kunkel, K. Chasapis, and S. Catalán, “An analytical

methodology to derive power models based on hardware and software

metrics,” Computer Science-Research and Development, vol. 31, no. 4,

pp. 165–174, 2016.

[139] M. F. Dolz Zaragozá, J. Kunkel, K. Chasapis, and S. Catalán Pallarés,

“An analytical methodology to derive power models based on hardware

and software metrics,” Computer Science-Research and Development,

2015.

[140] S. Wang, Software power analysis and optimization for power-aware

multicore systems. Wayne State University, 2014.

169

http://csgitlab.ucd.ie/hcl/hclwattsup
https://software.intel.com/en-us/node/599524
https://software.intel.com/en-us/node/599524
https://people.seas.harvard.edu/{~}apw/stress/
https://people.seas.harvard.edu/{~}apw/stress/

BIBLIOGRAPHY

[141] S. J. Eidenbenz, H. N. Djidjev, B. T. Nadiga, and E. J. Park, “Simulation-

based and analytical models for energy use prediction,” tech. rep., Los

Alamos National Laboratory (LANL), 2016.

[142] D. Dauwe, R. Friese, S. Pasricha, A. A. Maciejewski, G. A. Koenig,

and H. J. Siegel, “Modeling the effects on power and performance from

memory interference of co-located applications in multicore systems,” in

Proceedings of the International Conference on Parallel and Distributed

Processing Techniques and Applications (PDPTA), p. 1, The Steering

Committee of The World Congress in Computer Science, Computer En-

gineering and Applied Computing (WorldComp), 2014.

[143] X. Wu, H.-C. Chang, S. Moore, V. Taylor, C.-Y. Su, D. Terpstra, C. Lively,

K. Cameron, and C. W. Lee, “Mummi: multiple metrics modeling infras-

tructure for exploring performance and power modeling,” in Proceedings

of the Conference on Extreme Science and Engineering Discovery En-

vironment: Gateway to Discovery, p. 36, ACM, 2013.

[144] X. Wu, C. Lively, V. Taylor, H.-C. Chang, C.-Y. Su, K. Cameron, S. Moore,

D. Terpstra, and V. Weaver, “Mummi: multiple metrics modeling infras-

tructure,” in Software Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing (SNPD), 2013 14th ACIS International

Conference on, pp. 289–295, IEEE, 2013.

[145] K. Singh, M. Bhadauria, and S. A. McKee, “Real time power estimation

and thread scheduling via performance counters,” SIGARCH Comput.

Archit. News, vol. 37, pp. 46–55, July 2009.

[146] A. Shahid, M. Fahad, R. R. Manumachu, and A. Lastovetsky, “Improving

the accuracy of energy predictive models for multicore CPUs using ad-

ditivity of performance monitoring counters,” in Parallel Computing Tech-

nologies (V. Malyshkin, ed.), (Cham), pp. 51–66, Springer International

Publishing, 2019.

[147] A. Shahid, M. Fahad, R. Reddy Manumachu, and A. Lastovetsky, “A

comparative study of techniques for energy predictive modelling using

170

BIBLIOGRAPHY

performance monitoring counters on modern multicore cpus,” IEEE Ac-

cess, 2020.

[148] J.-A. Rico-Gallego, J.-C. Díaz-Martín, and A. L. Lastovetsky, “Extending

τ -lop to model concurrent mpi communications in multicore clusters,”

Future Generation Computer Systems, vol. 61, pp. 66–82, 2016.

[149] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley inter-

disciplinary reviews: computational statistics, vol. 2, no. 4, pp. 433–459,

2010.

[150] A. Liaw, M. Wiener, et al., “Classification and regression by randomfor-

est,” R news, vol. 2, no. 3, pp. 18–22, 2002.

[151] F. D. Foresee and M. T. Hagan, “Gauss-Newton approximation to

Bayesian learning,” in Proceedings of the 1997 international joint con-

ference on neural networks, vol. 3, pp. 1930–1935, Piscataway: IEEE,

1997.

[152] J. J. Moré, “The levenberg-marquardt algorithm: implementation and

theory,” in Numerical analysis, pp. 105–116, Springer, 1978.

[153] HCL, “SLOPE-PMC: Towards the automation of pmcs collection for in-

tel based multicore platforms https://csgitlab.ucd.ie/hcl/SLOPE/

tree/master/SLOPE-PMC,” 2017.

[154] HCL, “DE-Meter: Calculate dynamic energy consumption using rapl me-

ter https://github.com/ArsalanShahid116/DE-METER,” 2019.

[155] A. Lastovetsky, M. Fahad, H. Khaleghzadeh, S. Khokhriakov, R. Reddy,

A. Shahid, L. Szustak, and R. Wyrzykowski, “How pre-multicore meth-

ods and algorithms perform in multicore era,” in International Confer-

ence on High Performance Computing, pp. 527–539, Springer, 2018.

171

https://csgitlab.ucd.ie/hcl/SLOPE/tree/master/SLOPE-PMC
https://csgitlab.ucd.ie/hcl/SLOPE/tree/master/SLOPE-PMC
https://github.com/ArsalanShahid116/DE-METER

Appendix A

Methodology for Reliable Energy

Measurements

A.1 Rationale Behind Using Dynamic Energy

Consumption Instead of Total Energy Con-

sumption

We consider only the dynamic energy consumption in our work for reasons

below:

1. Static energy consumption is a constant (or an inherent property) of a

platform that can not be optimized. It does not depend on the application

configuration.

2. Although the static energy consumption is a major concern in embed-

ded systems, it is becoming less compared to the dynamic energy con-

sumption due to advancements in hardware architecture design in HPC

systems.

3. We target applications and platforms where dynamic energy consump-

tion is the dominating energy dissipator.

4. Finally, we believe its inclusion can underestimate the true worth of an

172

A.2. APPLICATION PROGRAMMING INTERFACE (API) FOR
MEASUREMENTS USING EXTERNAL POWER METER INTERFACES

(HCLWATTSUP)

optimization technique that minimizes the dynamic energy consumption.

We elucidate using two examples from published results.

• In our first example, consider a model that reports predicted and

measured the total energy consumption of a system to be 16,500 J

and 18,000 J. It would report the prediction error to be 8.3%. If

it is known that the static energy consumption of the system is

9000 J, then the actual prediction error (based on dynamic energy

consumption only) would be 16.6% instead.

• In our second example, consider two different energy prediction

models (MA and MB) with the same prediction errors of 5% for ap-

plication execution on two different machines (A and B) with same

total energy consumption of 10,000 J. One would consider both the

models to be equally accurate. But supposing it is known that the

dynamic energy proportions for the machines are 30% and 60%.

Now, the true prediction errors (using dynamic energy consump-

tion only) for the models would be 16.6% and 8.3%. Therefore, the

second model MB should be considered more accurate than the

first.

A.2 Application Programming Interface (API) for

Measurements Using External Power Meter

Interfaces (HCLWattsUp)

HCLServer1, HCLServer2, and HCLServer03 have a dedicated power meter

installed between their input power sockets and wall A/C outlets. The power

meter captures the total power consumption of the node. It has a data cable

connected to the USB port of the node. A Perl script collects the data from

the power meter using the serial USB interface. The execution of this script is

non-intrusive and consumes insignificant power.

We use HCLWattsUp API function, which gathers the readings from the

power meters to determine the average power and energy consumption dur-

173

A.2. APPLICATION PROGRAMMING INTERFACE (API) FOR
MEASUREMENTS USING EXTERNAL POWER METER INTERFACES

(HCLWATTSUP)

ing the execution of an application on a given platform. HCLWattsUp API can

provide the following four types of measures during the execution of an appli-

cation:

• TIME—The execution time (seconds).

• DPOWER—The average dynamic power (watts).

• TENERGY—The total energy consumption (joules).

• DENERGY— dynamic energy consumption (joules).

We confirm that the overhead due to the API is very minimal and does

not have any noticeable influence on the main measurements. It is important

to note that the power meter readings are only processed if the measure is

not hcl::TIME. Therefore, for each measurement, we have two runs. One

run for measuring the execution time. And the other for energy consumption.

The following example illustrates the use of statistical methods to measure the

dynamic energy consumption during the execution of an application.

The API is confined in the hcl namespace. Lines 10–12 construct the

Wattsup object. The inputs to the constructor are the paths to the scripts and

their arguments that read the USB serial devices containing the readings of

the power meters.

The principal method of Wattsup class is execute. The inputs to this

method are the type of measure, the path to the executable executablePath,

the arguments to the executable executableArgs and the statistical thresholds

(pIn) The outputs are the achieved statistical confidence pOut, the estimators,

the sample mean (sampleMean) and the standard deviation (sd) calculated

during the execution of the executable.

The execute method repeatedly invokes the executable until one of the

following conditions is satisfied:

• The maximum number of repetitions specified in maxRepeats is ex-

ceeded.

174

A.2. APPLICATION PROGRAMMING INTERFACE (API) FOR
MEASUREMENTS USING EXTERNAL POWER METER INTERFACES

(HCLWATTSUP)

#include <wattsup.hpp>

int main(int argc, char** argv)

{

std::string pathsToMeters[2] = {

"/opt/powertools/bin/wattsup1",

"/opt/powertools/bin/wattsup2"};

std::string argsToMeters[2] = {

"--interval=1",

"--interval=1"};

hcl::Wattsup wattsup(

2, pathsToMeters, argsToMeters

);

hcl::Precision pIn = {

maxRepeats, cl, maxElapsedTime, maxStdError

};

hcl::Precision pOut;

double sampleMean, sd;

int rc = wattsup.execute(

hcl::DENERGY, executablePath,

executableArgs, &pIn, &pOut,

&sampleMean, &sd

);

if (rc == 0)

std::cerr << "Precision NOT achieved.\n";

else

std::cout << "Precision achieved.\n";

std::cout << "Max repetitions "

<< pOut.reps_max

<< ", Elasped time "

<< pOut.time_max_rep

<< ", Relative error "

<< pOut.eps

<< ", Mean energy "

<< sampleMean

<< ", Standard Deviation "

<< sd

<< std::endl;

exit(EXIT_SUCCESS);

}

Figure A.1: Example illustrating the use of HCLWattsUp API for measuring the
dynamic energy consumption

175

A.3. METHODOLOGY TO OBTAIN A RELIABLE DATA POINT

• The sample mean is within maxStdError percent of the confidence in-

terval cl. The confidence interval of the mean is estimated using the

Student’s t-distribution.

• The maximum allowed time maxElapsedT ime specified in seconds has

elapsed.

If anyone of the conditions is not satisfied, then a return code of 0 is output

suggesting that statistical confidence has not been achieved. If statistical con-

fidence has been achieved, then the number of repetitions performed, the time

elapsed and the final relative standard error is returned in the output argument

pOut. At the same time, the sample mean and standard deviation are re-

turned. For our experiments, we use values of (1000, 95%, 2.5%, 3600) for the

parameters (maxRepeats, cl,maxStdError,maxElapsedT ime) respectively.

Since we use Student’s t-distribution for the calculation of the confidence in-

terval of the mean, we confirm specifically that the observations follow normal

distribution by plotting the density of the observations using the R tool.

A.3 Methodology to Obtain a Reliable Data Point

We follow the following strict methodology described below to make sure the

experimental results are reliable:

• The server is fully reserved and dedicated to these experiments during

their execution. We also made certain that there are no drastic fluctua-

tions in the load due to abnormal events in the server by monitoring its

load continuously for a week using the tool sar. Insignificant variation in

the load was observed during this monitoring period suggesting normal

and clean behavior of the server.

• We set the application kernel’s CPU affinity mask using SCHED

API’s system call SCHED_SETAFFINITY() Consider for example MKL-

DGEMM application kernel running on HCLServer1. To bind this appli-

cation kernel, we set its CPU affinity mask to 12 physical CPU cores of

Socket 1 and 12 physical CPU cores of Socket 2.

176

A.3. METHODOLOGY TO OBTAIN A RELIABLE DATA POINT

• To make sure that pipelining, cache effects, and so forth, do not happen,

the experiments are not executed in a loop and sufficient time (120 s)

is allowed to elapse between successive runs. This time is based on

observations of the times taken for the memory utilization to revert to

base utilization and processor (core) frequencies to come back to the

base frequencies.

• To obtain a data point, the application is repeatedly executed until the

sample mean lies in the 95% confidence interval and a precision of 0.025

(2.5%) has been achieved. For this purpose, Student’s t-test is used as-

suming that the individual observations are independent and their pop-

ulation follows the normal distribution. We verify the validity of these

assumptions by plotting the distributions of observations.

The function MeanUsingT test, shown in Algorithm 1, describes this

step. For each data point, the function is invoked, which repeatedly ex-

ecutes the application app until one of the following three conditions is

satisfied:

1. The maximum number of repetitions (maxReps) has been ex-

ceeded (Line 3).

2. The sample mean falls in the confidence interval (or the precision

of measurement eps has been achieved) (Lines 15–17).

3. The elapsed time of the repetitions of application execution has

exceeded the maximum time allowed (maxT in seconds) (Lines

18–20).

So, for each data point, the function MeanUsingT test is invoked and

the sample mean mean is returned at the end of the invocation. The

function Measure measures the execution time or the dynamic energy

consumption using the HCL’s WattsUp library [132] based on the input,

TIME or ENERGY . The input minimum and the maximum number

of repetitions, minReps and maxReps, differ based on the problem size

solved. For small problem sizes (32 ≤ n ≤ 1024), these values are set

to 10,000 and 100,000 respectively. For medium problem sizes (1024 <

177

A.3. METHODOLOGY TO OBTAIN A RELIABLE DATA POINT

n ≤ 5120), these values are set to 100 and 1000. For large problem

sizes (n > 5120), these values are set to 5 and 50. The values of maxT ,

cl and eps are respectively set to 3600, 0.95 and 0.025. If the precision

of measurement is not achieved before the maximum number of repeats

has been completed, we increase the number of repetitions and also the

maximum elapsed time allowed. However, we observed that condition

(2) is always satisfied before the other two in our experiments.

A.3.1 Methodology to Determine the Component-Level En-

ergy Consumption Using HCLWattsUp

We provide here the details of how system-level physical measurements using

HCLWattsUp can be used to determine the energy consumption by a compo-

nent (such as a CPU) during application execution.

We define the group of components running a given application kernel as

an abstract processor. For example, consider a matrix multiplication applica-

tion running on a multicore CPU. The abstract processor for this application,

which we call AbsCPU, comprises of the multicore CPU processor consisting

of a certain number of physical cores and DRAM. In this work, we use only

such configurations of the application which execute on AbsCPU and do not

use any other system resources such as solid-state drives (SSDs), network

interface cards (NIC) and so forth. Therefore, the change in energy consump-

tion of the system reported by HCLWattsUp reflects solely the contributions

from CPU and DRAM. We take several precautions in computing energy mea-

surements to eliminate any potential interference of the computing elements

that are not part of the abstract processor AbsCPU. To achieve this, we take

the following precautions:

1. We ensure the platform is reserved exclusively and fully dedicated to our

experiments.

2. We monitor the disk consumption before and during the application run

and ensure that there is no I/O performed by the application using tools

such as sar, iotop, and so forth.

178

A.3. METHODOLOGY TO OBTAIN A RELIABLE DATA POINT

Algorithm 1 Function determining the sample mean using Student’s t-test.
1: procedure MeanUsingTtest(

app,minReps,maxReps,
maxT, cl, accuracy,
repsOut, clOut, etimeOut, epsOut,mean)

Input:
The application to execute, app
The minimum number of repetitions, minReps ∈ Z>0

The maximum number of repetitions, maxReps ∈ Z>0

The maximum time allowed for the application to run, maxT ∈ R>0

The required confidence level, cl ∈ R>0

The required accuracy, eps ∈ R>0

Output:
The number of experimental runs actually made, repsOut ∈ Z>0

The confidence level achieved, clOut ∈ R>0

The accuracy achieved, epsOut ∈ R>0

The elapsed time, etimeOut ∈ R>0

The mean, mean ∈ R>0

2: reps← 0; stop← 0; sum← 0; etime← 0
3: while (reps < maxReps) and (!stop) do
4: st← measure(TIME)
5: Execute(app)
6: et← measure(TIME)
7: reps← reps+ 1
8: etime← etime+ et− st
9: ObjArray[reps]← et− st

10: sum← sum+ObjArray[reps]
11: if reps > minReps then
12: clOut← fabs(gsl_cdf_tdist_Pinv(cl, reps− 1))

× gsl_stats_sd(ObjArray, 1, reps)
/ sqrt(reps)

13: if clOut× reps
sum

< eps then
14: stop← 1
15: end if
16: if etime > maxT then
17: stop← 1
18: end if
19: end if
20: end while
21: repsOut← reps; epsOut← clOut× reps

sum

22: etimeOut← etime; mean← sum
reps

23: end procedure

179

A.3. METHODOLOGY TO OBTAIN A RELIABLE DATA POINT

3. We ensure that the problem size used in the execution of an application

does not exceed the main memory and that swapping (paging) does not

occur.

4. We ensure that the network is not used by the application by monitoring

using tools such as sar, atop, etc.

5. We set the application kernel’s CPU affinity mask using SCHED

API’s system call SCHED_SETAFFINITY() Consider for example MKL

DGEMM application kernel running on only abstract processor A. To bind

this application kernel, we set its CPU affinity mask to 12 physical CPU

cores of Socket 1 and 12 physical CPU cores of Socket 2.

6. Fans are also a great contributor to energy consumption. On our plat-

form fans are controlled in two zones: (a) zone 0: CPU or System fans,

(b) zone 1: Peripheral zone fans. There are 4 levels to control the speed

of fans:

• Standard: BMC control of both fan zones, with CPU zone based on

CPU temp (target speed 50%) and Peripheral zone based on PCH

temp (target speed 50%)

• Optimal: BMC control of the CPU zone (target speed 30%), with

Peripheral zone fixed at low speed (fixed 30%)

• Heavy IO: BMC control of CPU zone (target speed 50%), Peripheral

zone fixed at 75%

• Full: all fans running at 100%

In all speed levels except the full, the speed is subject to be changed with

temperature and consequently, their energy consumption also changes

with the change of their speed. Higher the temperature of CPU, for ex-

ample, higher the fans’ speed of zone 0 and higher the energy consump-

tion to cool down. This energy consumption to cool the server down,

therefore, is not consistent and is dependent on the fans’ speed and

consequently can affect the dynamic energy consumption of the given

application kernel.

180

A.3. METHODOLOGY TO OBTAIN A RELIABLE DATA POINT

Hence, to rule out the fans’ contribution to dynamic energy consumption,

we set the fans at full speed before launching the experiments. When

set at full speed, the fans run consistently at a fixed speed until we do

so to another speed level. Hence, fans consume the same amount of

power which is included in the static power of the platform.

7. We monitor the temperature of the platform and speed of the fans (after

setting it at full) with help of Intelligent Platform Management Interface

(IPMI) sensors, both with and without the application run. We find no

considerable difference in temperature and find the speed of fans the

same in both scenarios.

Thus, we ensure that the dynamic energy consumption obtained using

HCLWattsUp reflects the contribution solely by the abstract processor exe-

cuting the given application kernel.

A.3.2 Methodology to Obtain Dynamic Energy Consump-

tion Using Intel RAPL

We first present a brief on RAPL before introducing our methodology to

compare the measurements of dynamic energy consumption by RAPL and

HCLWattsUp.

RAPL (Running Average Power Limit) [30] provides a way to monitor and

-dynamically-set the power limits on processor and DRAM. So, by control-

ling the maximum average power, it matches the expected power and cooling

budget. RAPL exposes its energy counters through model-specific registers

(MSRs) It updates these counters once in every 1 ms. The energy is calcu-

lated as a multiple of model-specific energy units. It divides a platform into four

domains, which are presented below:

1. PP0 (Core Devices): Power plane zero includes the energy consumption

by all the CPU cores in the socket(s).

2. PP1 (Uncore Devices): Power plane one includes the power consump-

tion of integrated graphics processing unit – which is not available on

181

A.3. METHODOLOGY TO OBTAIN A RELIABLE DATA POINT

server platforms– uncore components.

3. DRAM: Refers to the energy consumption of the main memory.

4. Package: Refers to the energy consumption of entire socket including

core and uncore: Package = PP0 + PP1.

PP0 is removed in the the Haswell E5 generation [33]. For our experiments,

we use Package and DRAM domains to obtain the energy consumption by

CPU and DRAM when executing a given application.

To obtain the energy consumption provided by RAPL, we use a well-known

package, Intel PCM [83]. We ensure that the RAPL values output by this pack-

age is correct by comparing with values given by another well known package,

PAPI [37].

To compare the RAPL and HCLWattsUp energy measurements, we use

the following workflows of the experiments. The workflow to determine the

dynamic energy consumption by the given application using RAPL follows:

1. Using Intel PCM and DE-Meter A.4, we obtain the base power of CPUs

(core and un-core) and DRAM (when the given application is not run-

ning).

2. Using HCLWattsUp API, we obtain the execution time of the given appli-

cation.

3. Using Intel PCM/PAPI, we obtain the total energy consumption of the

CPUs and DRAM, during the execution of the given application.

4. Finally, we calculate the dynamic energy consumption (of CPUs and

DRAM) by subtracting the base energy from total energy consumed dur-

ing the execution of the given application.

The workflow to determine the dynamic energy consumption using

HCLWattsUp follows:

1. Using HCLWattsUp API, we obtain the base power of the server (when

the given application is not running).

182

A.4. DE-METER: CALCULATE DYNAMIC ENERGY CONSUMPTION
USING RAPL METER

2. Using HCLWattsUp API, we obtain the execution time of the application.

3. Using HCLWattsUp API, we obtain the total energy consumption of the

server, during the execution of the given application.

4. Finally, we calculate the dynamic energy consumption by subtracting

the base power from total energy consumed during the execution of the

given application.

We make sure that the execution time of the application kernel is the same

for dynamic energy calculations by both tools. So, any difference between the

energy readings of the tools comes solely from their power readings.

We analyzed 51 energy profiles of different application configurations of the

aforementioned applications, using RAPL and HCLWattsUp. Our configuration

parameters are: (a) Problem size (M×N) where M ≤ N , (b) Number of CPU

threads or number of CPU cores.

The cost in terms of a number of measurements to determine the dynamic

energy consumption of the application using sensors is the same for both tools

as we need three (Base power, Execution Time and Total Energy) measure-

ments to obtain a single data point of the application dynamic energy profile.

A.4 DE-METER: Calculate Dynamic Energy Con-

sumption Using RAPL Meter

DE-METER is a wrapper using Likwid tool to calculate the dynamic energy

consumption of CPU and DRAM using RAPL within a given statistical confi-

dence interval for any given application.

The following are the software requirements for DE-METER.

• Likwid tool

• Pyhton compiler

• Linux Debian or Cent OS

183

A.4. DE-METER: CALCULATE DYNAMIC ENERGY CONSUMPTION
USING RAPL METER

A.4.1 How to Use DE-METER

For getting dynamic energy consumption of any given application using

default settings, specify the application in ’run_application.py’ script and run

using following command:

python ./get_dynamic_energy <application>

Get base power of server using:

python get_base.py <desired_varience (1-100)> <max_iterations> <ver-

bosity (1 || 2)>

python get_base.py 5 100 1 1

Get total power of server running an application using:

python ./get_total_energy.py <desired_varience (1-100)>

<max_iterations> <desired_std (e.g. 10)> <verbosity (1 || 2)> <applica-

tion>

python ./get_total_energy.py 5 100 10 1 <./app>

The source code for DE-METER is available at https://github.com/

ArsalanShahid116/DE-METER

184

https://github.com/ArsalanShahid116/DE-METER
https://github.com/ArsalanShahid116/DE-METER

Appendix B

Methodology for Collection of

PMCs

This chapter provides the details about using PMC collection tools on

HCLServers and methodology to obtain PMCs reliably.

B.1 List of PMC groups Provided by Likwid

The Likwid tools support likwid-perfctr as a command-line tool for the collection

of PMCs. Its usage is shown in Figure B.1.

We used likwid-pin to pin the applications to specific cores on HCLServers

for the experiments. The usage for likwid-pin is shown in Figure B.2.

The list of PMC groups provided by Likwid tool [38] on HCLServer2 is

shown in the Figure B.3.

B.2 Brief overview of SLOPE-PMC and Additivi-

tyChecker

SLOPE-PMC is developed on top of Likwid tool to automate the process of

PMC collection. It takes an input application and operates in three steps. First,

it identifies the available PMCs on a given platform and lists them in a file. In

185

B.2. BRIEF OVERVIEW OF SLOPE-PMC AND ADDITIVITYCHECKER

$ likwid-perfctr

likwid-perfctr -- Version 4.3.0

A tool to read out performance counter registers on x86 processors

Options:

-h, --help Help message

-v, --version Version information

-V, --verbose Verbose output, 0 (only errors), 1 (info), 2 (details), 3 (

developer)

-c <list> Processor ids to measure (required), e.g. 1,2-4,8

-C <list> Processor ids to pin threads and measure, e.g. 1,2-4,8

For information about the <list> syntax, see likwid-pin

-g, --group Performance group or custom event set string

-H Get group help (together with -g switch)

-s, --skip Bitmask with threads to skip

-M <0|1> Set how MSR registers are accessed, 0=direct, 1=

accessDaemon

-a List available performance groups

-e List available events and counter registers-E <string>

-i, --info Print CPU info

-T <time> Switch event sets with given frequency

-f, --force Force overwrite of registers if they are in use

Modes:-S Stethoscope mode with duration in s, ms or us, e.g 20ms

-t <time> Timeline mode with frequency in s, ms or us, e.g. 300ms

The output format (to stderr) is:

-m, --marker Use Marker API inside code

Output options:

-o, --output Store output to file. (Optional: Apply text filter

according to filename suffix)

-O Output easily parseable CSV instead of fancy tables

--stats Always print statistics table

Examples:

List all performance groups:

likwid-perfctr -a

List all events and counters:

likwid-perfctr -e

List all events and suitable counters for events with 'L2' in them:

likwid-perfctr -E L2

Run command on CPU 2 and measure performance group TEST:

likwid-perfctr -C 2 -g TEST ./a.out

Figure B.1: likwid-perfctr options and usage

186

B.2. BRIEF OVERVIEW OF SLOPE-PMC AND ADDITIVITYCHECKER

$ likwid-pin -h

-h, --help Help message

-v, --version Version information

-V, --verbose Verbose output, 0 (only errors), 1 (info), 2 (details), 3 (

developer)

-i Set NUMA interleave policy with all involved numa nodes

-m Set NUMA membind policy with all involved numa nodes

-S, --sweep Sweep memory and LLC of involved NUMA nodes

-c <list> Comma separated processor IDs or expression

-s, --skip Bitmask with threads to skip

-p Print available domains with mapping on physical IDs

If used together with -p option outputs a physical processor

IDs.

-d <string> Delimiter used for using -p to output physical processor

list, default is comma.

-q, --quiet Silent without output

// Command to use likwid-pin to pin myApp to 5 threads

$ likwid-pin -c 0,2,4-6 <myApp> <app-parameters>

Figure B.2: List of PMC groups provided by Likwid tool on HCLServer2

187

B.2. BRIEF OVERVIEW OF SLOPE-PMC AND ADDITIVITYCHECKER

$ likwid-perfctr -a

Group name Description

----------- --

BRANCH Branch prediction miss rate/ratio

CACHES Cache bandwidth in MBytes/s

CBOX CBOX related data and metrics

CLOCK Power and Energy consumption

DATA Load to store ratio

ENERGY Power and Energy consumption

FALSE_SHARE False sharing

FLOPS_AVX Packed AVX MFLOP/s

HA Main memory bandwidth in MBytes/s

seen from Home agent

ICACHE Instruction cache miss rate/ratio

L2 L2 cache bandwidth in MBytes/s

L2CACHE L2 cache miss rate/ratio

L3 L3 cache bandwidth in MBytes/s

L3CACHE L3 cache miss rate/ratio

MEM Main memory bandwidth in MBytes/s

NUMA Local and remote memory accesses

QPI QPI Link Layer data

RECOVERY Recovery duration

SBOX Ring Transfer bandwidth

TLB_DATA L2 data TLB miss rate/ratio

TLB_INSTR L1 Instruction TLB miss rate/ratio

UOPS UOPs execution info

UOPS_EXEC UOPs execution

UOPS_ISSUE UOPs issueing

UOPS_RETIRE UOPs retirement

CYCLE_ACTIVITY Cycle Activities

Figure B.3: List of PMC groups provided by Likwid tool on HCLServer2

188

B.2. BRIEF OVERVIEW OF SLOPE-PMC AND ADDITIVITYCHECKER

the second step, the input application is executed several times as in a single

invocation of an application only 4 PMCs can be collected. To ensure reliable

results, we also take an average of each PMC count using multiple executions

(at least 3) of an application. In the final step, the PMCs are extracted with

labels in a stats file. Figure B.4 summarizes the work-flow of SLOPE-PMC.

SLOPE-PMC

Input Application

1. PMCs

Identification

Step: 2. Application

Execution

Step: 3. Stats

Collection

Step:

PMCs

Figure B.4: SLOPE-PMC: Towards the automation of PMC collection on Mod-
ern Computing Platforms

Figure B.5 describes the AdditivityChecker where it takes as an input: 1).

PMCs of two base applications A and B, and a compound application (AB)

composed of base applications and 2). user-specified tolerance in percentage.

It returns a list of additive and non-additive PMCs along with their percentage

errors.

The source code for SLOPE-PMC is available online at:

https://github.com/ArsalanShahid116/SLOPE-PMC

The source code for AdditivityChecker is available online at: http://

csgitlab.ucd.ie/hcl/SLOPE/tree/master/AdditivityChecker

189

http://csgitlab.ucd.ie/hcl/SLOPE/tree/master/AdditivityChecker
http://csgitlab.ucd.ie/hcl/SLOPE/tree/master/AdditivityChecker

B.2. BRIEF OVERVIEW OF SLOPE-PMC AND ADDITIVITYCHECKER

AdditivityChecker

PMCs A

Additive/Non-Additive PMCs

PMCs B PMCs AB

Tolerance (%)

Figure B.5: AdditivityChecker: Test PMCs for Additivity

190

Appendix C

Methodology to Obtain Likwid and

PAPI PMCs

C.1 LIKWID PMCs

In this section, we explain the experimental methodology to obtain Likwid

PMCs.

A sample Likwid command-line invocation is shown below where EVENTS

represents one or more PMCs, which are collected during the execution of the

given application APP:

likwid-perfctr -f -C S0:0-11@S1:12-23 -g EVENTS APP

Here, the application (APP) during its execution is pinned to physical cores

(0-11, 12-23) in our platform. Since Likwid do not provide option to bind appli-

cation to memory, we have used numactl, i.e., a command-line linux tool, with

option –membind to pin our applications to memory blocks (for our platform

numactl gives 2 memory blocks, 0 and 1). The list of comma-separated PMCs

is specified in EVENTS. For example, the following command:

likwid-perfctr -f -C S0:0-11@S1:12-23

-g ICACHE_ACCESSES:PMC0,ICACHE_MISSES:PMC1

numactl –membind=0,1 APP

determines the counts for two PMCs, ICACHE_ACCESSES:PMC0 and

ICACHE MISSES:PMC1.

191

C.2. PAPI PMCS

The collection of all PMCs requires significant programming efforts and

execution time because only a limited number of PMCs can be obtained in

a single application run due to the limited number of registers dedicated to

collecting PMCs. In addition, to ensure the reliability of our results, we follow

a detailed statistical methodology where a sample mean of a PMC is used.

It is calculated by executing the application repeatedly until it lies in the 95%

confidence interval and a precision of 0.050 (5.0%) has been achieved. For

this purpose, Student’s t-test is used assuming that the individual observations

are independent and their population follows the normal distribution. We verify

the validity of these assumptions by plotting the distributions of observations.

Likwid provides 167 PMCs for our platform. In order to collect all of them for

an application, we have to run the application 53 times. We wrote a software

tool to automate this collection process, SLOPE-PMC-LIKWID [153].

Before we apply the additivity test, we remove few PMCs such as

IIO_CREDIT (related to I/O and QPI), and OFFCORE_RESPONSE

since they exhibit zero counts. We also remove PMCs having very low count

(less than 10). The resulting dataset contained 151 performance events, which

are then inputted to the additivity test.

C.2 PAPI PMCs

In this section, we explain the experimental methodology to obtain PAPI PMCs.

We check the available PAPI PMCs for our Intel Haswell platform using

the command-line invocation, ′papi_avail − a′. We found that a total of 53

PMCs are available. The number of PMCs that can be gathered in a single

application run varies. While gathering a set of 4 PMCs is common, there are

a few event sets, which can contain up to 2 or 3 PMCs. Therefore, we found

that an application has to be executed 14 times in order to collect all the PMCs

for the application on our platform.

We wrote a software tool to automate the process of collection of PMCs,

SLOPE-PMC-PAPI [153]. It is to be noted that for ensuring the reliability of

our experimental results, we follow the same statistical methodology that was

192

C.2. PAPI PMCS

followed for determining Likwid PMCs.

193

Appendix D

Calibration of WattsUp Pro

power-meters

The dynamic energy consumption during the application execution is mea-

sured using a WattsUp Pro power meter on both servers (HCLServer1 and

HCLServer2) and obtained programmatically via the HCLWattsUp interface

[132]. The power meter is periodically calibrated using an ANSI C12.20

revenue-grade power meter, Yokogawa WT210. In this chapter, we explain

our methodology and some results to calibrate our power-meters.

We compare the WattsUp Pro power-meter power measurements with

Yokogawa using three methods that are explained as follows:

1. Naked-eye visual monitoring

• We first attach the WattsUp Pro power-meters to both servers.

• Once the servers are switched on and are in stable condition, we

monitor the WattsUp pro LCDs and note the power readings in

watts for both servers.

• we carefully plugged off the WattsUp Pro power meters and plug

the servers via Yokogawa power meter.

• Once the servers are switched on and are in stable condition, we

monitor the Yokogawa LCDs and note the power readings in watts

for both servers.

194

• On comparison, we find a difference of 2 watts and 3 watts for

HCLServer1 and HCLServer2, respectively.

2. Monitoring server base power

• We connect both power meters to both servers one by one and

once the servers are stable, we programmatically obtain the power

readings from both power meters.

• For WattsUp Pro, a Perl script provides the power readings with a

granularity of 1 second. Similarly, Yokogawa comes with its own

software and allows us to read power readings at the granularity of

1 second.

• We measure and record the base powers of both servers for 3.5

hours using both power meters. Figure D.1(a) and D.1(b) compare

the idle power profiles of HCLServer1 and HCLserver2 using both

power meters, respectively. It can be seen that both profiles are

almost the same. However, HCLServer1 has more power variations

and HCLServer2 is considerably stable in terms of base power. For

HCLServer2, there are power spikes after every half an hour for

a couple of seconds. This is because of a daemon service being

triggered by the OS.

• Table D.1 show the minimum, average, and maximum power con-

sumption for both servers and power meters. If we compare the av-

erage, WattsUp Pro gives 1-2 watts less power consumption than

Yokogawa.

3. Measurement of total energy consumption for two scientific appli-

cations

• We choose two scientific applications: 1) DGEMM and 2) FFT from

Intel MKL.

• We execute DGEMM for problem sizes 4096×4096 to

30720×30720 with a constant step size of 1024 on HCLServer1.

We then execute DGEMM for problem sizes 15360×15360 to

195

30720×30720 with a constant step size of 1024 on HCLServer2.

We build the total energy consumption profiles using both power

meters for these application executions.

• We execute FFT for problem sizes 4096×4096 to 30720×30720

with a constant step size of 1024 on HCLServer1. We then execute

FFT for problem sizes 8384×8384 to 62880×62880 with a con-

stant step size of 2096 on HCLServer2. We build the total energy

consumption profiles using both power meters for these application

executions.

• Figure D.2 and D.3 show the total energy consumption profiles for

DGEMM and FFT on both servers, respectively.

• Table D.2 show the relative error in percentage for total energy con-

sumptions obtained using HCLServer1 and HCLServer2. It can be

seen that the average measurement error for DGEMM is 4.95% and

9.25% on HCLServer2 and HCLServer1, respectively. For FFT, the

average measurement error is 6% and 7.4% on HCLServer2 and

HCLServer1, respectively.

Table D.1: Minimum, maximum and average of idle power using WattsUp Pro
and Yokogawa PowerMeter on HCLServer1 and HCLServer2

HCLServer1 HCLServer2
WattsUp Pro Yokogawa WattsUp Pro Yokogawa

Min 196 197.72 99.1 99.93
Max 212.8 219.47 123.3 125.6
Average 198.2 201.0 100.03 102.06

196

(a)

(b)

Figure D.1: Calibration test for idle power using WattsUp Pro and Yokogawa
PowerMeter on (a) HCLServer1 and (b) HCLServer2

Table D.2: Comparison of minimum, average, and maximum measurement
errors for DGEMM and FFT on HCLServer1 and HCLServer2 using WattsUp
Pro and Yokogawa

HCLServer2 Errors
[%] (Min, Avg, Max)

HCLServer1 Errors
[%] (Min, Avg, Max)

DGEMM (2.01, 4.95, 8.16) (0.58, 9.25, 33.18)
FFT (0.11, 6.02, 15.84) (0.20, 7.41, 16.90)

197

(a)

(b)

Figure D.2: Comparison of total power for Intel MKL DGEMM using WattsUp
Pro and Yokogawa PowerMeter on (a) HCLServer1 and (b) HCLServer2

198

(a)

(b)

Figure D.3: Comparison of total power for Intel MKL FFT using WattsUp Pro
and Yokogawa PowerMeter on (a) HCLServer1 and (b) HCLServer2

199

Appendix E

Employment of PMCs Selected

Using Consistency Test in RF and

NN

E.0.1 Platform-level Models

We employ the PMCs C1-C6 to build six RF and six NN models. The models

use the same train and test set as we used to build LR models using approach

A. Table E.1 and E.2 show the minimum, average, and maximum prediction

accuracies of RF and NN models for the test sets, respectively. It can be seen

that the prediction accuracy of RF and NN models is poor as compared to LR

models. We observe a decrease in average prediction error from RF1 to RF4

and NN1 to NN4. The minimum average prediction errors for RF and NN mod-

els are obtained for RF4 (27.18%) and NN4 (26.06%), respectively. However,

we observe an RF and NN based model perform worse when only one or two

PMCs are employed as model variables for dynamic energy prediction. This is

because a model fails to train well with only two PMCs.

E.0.2 Application-level Models

We build two random forest models, {RF-A,RF-NA}, and two neural network

models, {NN-A,NN-NA}. The models {RF-A,NN-A} are trained using PMCs

200

Table E.1: Random forest (RF) regression-based energy predictive models
(RF1-RF6) with their minimum, average, and maximum prediction errors.

Model PMCs Relative prediction
errors [%] (min, avg,
max)

RF1 C1, C2, C3, C4, C5, C6 (3.18, 38.2, 199.2)
RF2 C1, C2, C3, C4, C5 (3.5, 33.4, 186.6)
RF3 C1, C2, C3, C4 (2.5, 30.02, 180.1)
RF4 C1, C2, C3 (2.4, 27.18, 152.3)
RF5 C1, C2 (3.1, 43.4, 174.4)
RF6 C1 (2.9, 57.7, 172.1)

Table E.2: Neural Networks based energy predictive models (NN1-NN6) with
their minimum, average, and maximum prediction errors.

Model PMCs Relative prediction
errors [%] (min, avg,
max)

NN1 C1, C2, C3, C4, C5, C6 (2.1, 30.31, 192.3)
NN2 C1, C2, C3, C4, C5 (2.02, 29.32, 201.2)
NN3 C1, C2, C3, C4 (1.9, 29.14, 160.1)
NN4 C1, C2, C3 (2.2, 26.06, 180.3)
NN5 C1, C2 (8.5, 64.21, 192.6)
NN6 C1 (8.8, 65.05, 201.6)

201

belonging to PA, and the models RF-NA,NN-NA are trained using PMCs be-

longing to PNA. Table E.3 show the relative and proportional prediction errors

of the models. It can be seen that the models based on PA have better average

prediction accuracies than the models based on PNA.

Table E.3: Prediction accuracies of LR models using nine PMCs.

Model PMCs Relative Errors p in
[%] (Min, Avg, Max)

Proportional Errors µ
(Min, Avg, Max)

RF-A PA (.001, 28.39, 132.2) (1, 1.41, 4.42)
RF-NA PNA (0.031, 35.90, 1721) (1.002, 3.71, 13.12)
NN-A PA (0.031, 14.31, 94.5) (1, 1.43, 3.93)
NN-NA PNA (0.601, 19.82, 166.7) (1.001, 4.21, 15.61)

We use PA and PNA to build two sets of four most energy correlated PMCs.

The first set PA4, {X1, X2, X4, X8}, is constructed using PA and the second

set PNA4, {Y 1, Y 3, Y 8, Y 9}, using PNA. We build two random forest mod-

els, {RF-A4,RF-NA4}, and two neural network models, {NN-A4,NN-NA4}. The

models {RF-A4,NN-A4} are trained using PMCs belonging to PA4, and the

models {RF-NA4,NN-NA4} are trained using PMCs belonging to PNA4. The

training and test data-sets are the same as before.

Table E.4 shows the relative and proportional prediction errors of the mod-

els. Model NN-A4 has the least average of p and µ of 11.46% and 1.12. We

can see that models {RF-NA4,NN-NA4} build using highly correlated but non-

additive PMCs do not demonstrate much improvement in average prediction

accuracies when compared to models {RF-NA,NN-NA} based on nine non-

additive PMCs.

Table E.4: Prediction accuracies of LR, RF, and NN models using four PMCs.

Model PMCs Relative Errors p in
[%] (Min, Avg, Max)

Proportional Errors µ
(Min, Avg, Max)

RF-A4 PA4 (0.005, 22.73, 207.7) (1, 1.21, 4.38)
RF-NA4 PNA4 (0.035, 38.06, 1628) (1.021, 3.01, 8.21)
NN-A4 PA4 (0.003, 11.46, 152.2) (1.001, 1.12, 3.58)
NN-NA4 PNA4 (0.016, 21.32, 227.5) (1.03, 3.82, 9.37)

202

Appendix F

Employing High-Level Metrics as

Model Variables in Energy

Predictive Models: A Preliminary

Study

In this thesis, we previously showed that all the PMCs on modern comput-

ing platforms are non-additive, in general, (for an input tolerance of 5%) and

hence a model purely based on PMCs is pruned to prediction errors. In this

chapter, we first identify the High-Level Metrics (HLM) from applications and

hardware components and evaluate them to be used as model variables us-

ing the consistency test presented in Chapter 5 of this thesis. The hardware

HLM includes the utilization of CPU and memory and the on-chip sensor en-

ergy measurements. The application HLM representing the activities of the

application’s execution includes floating-point operations (FLOP) and the total

number of instructions. We demonstrate that employing high-level metrics as

model variables to predict the dynamic energy consumption of the applications

provides significant improvements in the prediction accuracies of the models.

We denote the metrics that pass the consistency test as prime HLM.

We divide our experiments into three groups, i.e., group 1, group 2, and

group 3. The experiments in groups 1 and 2 are performed on HCLServer1

203

and HCLServer2. However, group 3 only uses HCLServer1.

In group 1, we study in detail the accuracy of application-specific energy

predictive models using three popular techniques: (a). Linear Regression

(LR), (b). Random Forest (RF), and (c). Neural Networks (NN). The ex-

periments are conducted on HCLServer1 and HCLServer2 using two highly

optimized scientific applications from Intel Math Kernel Library (MKL): (1).

DGEMM and (2). FFT. We build dynamic energy predictive models using pure

utilization parameters, PMCs, and HLMs and analyze them in terms of their

prediction errors.

In group 2, we study platform-level energy predictive models based on

LR, RF, and NN. We first study the accuracy of energy predictive models

employing pure utilizations, PMCs, and HLMs for a small set of applications.

We further expand the data set with different types of applications (including

memory-bound, compute-bound, optimized, and unoptimized kernels) using a

vast range of problem sizes and then to analyze the prediction accuracy of the

models.

Finally, in group 3, we conduct an experimental study to explore the tech-

niques to build accurate and reliable energy predictive models for workload

parallel applications running on a dual-socket multicore server (HCLServer1).

We employ socket-level and platform-level PMCs and HLMs in energy models

using LR, RF, and NN and study their prediction accuracies.

The main original contributions of this work are:

• A study exploring the High-Level Metrics (HLMs) that reflect the com-

plete energy-consuming activities of the applications executing on a

computing platform. We provide a detailed experimental methodology

to extract and select the HLMs on modern multicore CPU platforms.

• An experimental study demonstrating the accuracy of application-

specific energy predictive models based on LR, RF, and NN techniques

using pure utilization parameters, PMCs, and HLMs. We show that the

use of pure CPU and memory utilization as predictor variables in a model

does not provide a good prediction accuracy, but should be combined

with other high-level application metrics and on-chip sensor readings to

204

F.1. SELECTION PROCEDURE FOR MODEL VARIABLES

build a model with considerable accuracy. We further show that a model

based on HLMs performs significantly better in terms of average predic-

tion accuracy than a model employing only additive PMCs. We show

that HLMs better reflect the dynamic energy-consuming activities of a

processor executing an application.

• A study demonstrating the effectiveness of using HLMs as model vari-

ables in platform-level energy predictive models using LR, RF, and NN.

• A study exploring the effective techniques for accurate and reliable en-

ergy predictive models for workload-parallel applications executing on

a dual-socket multicore CPU platform. We experimentally demonstrate

that the use of socket-level HLMs as predictor variables results in the

most accurate model; when compared with platform-level PMC-based,

platform-level HLM-based, and socket-level PMC-based models. There-

fore, socket-level HLMs better reflect the contributions of individually

powered components (sockets) to the total dynamic energy consump-

tion.

We organize the rest of this chapter as follows. The following section

presents in-detail the methodology to select the predictor variables along with

our experimental setups. We then present our experimental results, analysis,

and discussions. The final chapter presents the summary as conclusions.

F.1 Selection Procedure for Model Variables

All the model variables are evaluated through the consistency test presented

in Chapter 4.

F.1.1 Experimental Setup

Our experimental platforms include the latest Intel Haswell (HCLServer1) and

Intel Skylake (HCLServer2) multicore CPU servers, whose specifications are

205

F.1. SELECTION PROCEDURE FOR MODEL VARIABLES

given in the Table 3.1. The detailed experimental workflow is illustrated in

Figure 5.1.

Our application test suite is composed up of scientific applications that

are highly optimized such as DGEMM and FFT from the Intel math kernel

library (MKL), NASA benchmarking suite (NAS Parallel), and Intel optimized

HPCG. These applications consist up of highly compute-bound and memory-

bound kernels. To ensure the diversity of applications, we also include non-

scientific applications such as stress in our application suite. Table 3.2 lists the

applications along with their description.

For each application run on our platforms, we record the measurements

for the following:

1. Dynamic energy consumption.

2. Execution time.

3. PMCs.

4. HLMs.

The dynamic energy consumption during the application execution is mea-

sured using a WattsUp Pro power meter and obtained programmatically via

the HCLWattsUp API [132]. The power meter is periodically calibrated using

an ANSI C12.20 revenue-grade power meter, Yokogawa WT210. PMCs and

HLMs are obtained using the Likwid tool and Linux Perf.

Steps to Ensure Reliable Experiments

To ensure that our results are reliable, we follow a detailed statistical method-

ology that is summarized in Section 4.3.4.

We now apply the consistency test to select PMCs and HLMs. HLMs are

the high-level application or hardware metrics that are the functional combi-

nation of individual PMCs and that reflect the complete activity of application

execution on a platform.

206

F.1. SELECTION PROCEDURE FOR MODEL VARIABLES

F.1.2 Selection of Performance Monitoring Counters

(PMCs)

We use Likwid [38],[39] to obtain the PMCs. It offers 164 and 323 PMCs on

HCLServer1 and HCLServer2 (Table 3.1), respectively. The collection of all

the PMCs is a tedious job and requires a lot of time because of the restriction

to obtain a limited number of PMCs (3-4) for application execution. This restric-

tion is because of the availability of a limited number of hardware registers to

store them. We found that each application must be executed about 53 and 99

times to collect all the PMCs on HCLServer1 and HCLServer2, respectively.

We apply the first stage of consistency test, that is, to check if the PMCs

are deterministic and reproducible using the following two steps:

1. We eliminate PMCs with counts less than or equal to 10. The elimi-

nated PMCs have no significance on modelling energy consumption of

our platform because we found them to be non-reproducible. We also re-

move several PMCs that count equal to zero. The reduced set contains

151 and 298 PMCs on Intel Haswell and Intel Skylake, respectively.

2. We compare the counts obtained for PMCs obtained using Likwid, PAPI,

and Linux Perf. We find a difference in counts for several PMCs obtained

using different tools. We eliminate these PMCs from our set. This elimi-

nation of PMCs results in 115 and 224 PMCs on Intel Haswell and Intel

Skylake platform. We call the PMCs that pass the first stage as prime

PMCs.

Literature (section 2.3.5) shows that the dominant groups from which

PMCs are mainly selected for energy predictive models are cache, branch

instructions, micro-operations (µops), and main memory activities. We make

sure that the selected PMCs are from the list of prime PMCs and the men-

tioned dominant groups, and apply the second stage of consistency test.

207

F.1. SELECTION PROCEDURE FOR MODEL VARIABLES

Additivity of PMCs

After studying the additivity of PMCs, we conclude that all the PMCs fail the

additivity test for a vast set of applications with a specified tolerance of 5%

on current multicore platforms. However, the additivity test holds if applied

on the PMCs of individual applications. Therefore, PMCs are not useful for

platform-level energy predictive models but can be employed in application-

specific models.

F.1.3 Selection of High-Level Metrics (HLMs)

We pick the high-level metrics that reflect the overall resource consumption

and application activities of the platform when running an application. These

metrics are given as below:

• Average CPU and memory utilization [(CPU, Memory) Util × Time]: To

obtain the utilizations, we follow the following steps

– Using an automated script, we collect the average CPU and mem-

ory utilization in percentage for the platform using Linux ps tool.

– The script reads the CPU and memory utilization after every 0.25

seconds during application execution.

– The overall CPU utilization at a particular instance is the average

utilization of the individual cores employed in the execution of the

application.

– We apply the trapezoidal rule on the utilization profile for an appli-

cation to obtain the average.

– The average CPU and memory utilization are finally multiplied with

the application execution time.

• Cache misses [Cmisses]: Cmisses represents the number of memory ac-

cesses that could not be served by any of the caches. We obtain their

count using the Linux Perf tool.

208

F.1. SELECTION PROCEDURE FOR MODEL VARIABLES

• Memory accesses [Maccesses]: Maccesses represents the total number of

main memory accesses for application execution. We obtain their count

using the Linux Perf tool.

• Floating-point operations [FLOPtotal]: FLOPtotal represents the total

number of floating-point operations for an application run. We use the

Likwid tool to obtain their count.

• Instructions [Instotal]: Instotal represents the total number of instructions

during execution of an application. We use the Likwid tool to obtain their

count.

• Dynamic energy using RAPL [DERAPL]: Since dynamic energy con-

sumption measurements for applications using RAPL are inaccurate

[36], we investigate if RAPL readings can be used as a model parameter.

We use an automated tool called DE-Meter [154] to obtain the dynamic

energy consumption within specified statistical confidence (95% for our

experiments) for an application run.

We evaluated each metric using the consistency test on HCLServer1 and

HCLServer2.

First, we pass each metric from the first stage to check if they are de-

terministic and reproducible by executing applications in our test suite (Ta-

ble 3.2) using different problem sizes on HCLServer1 and HCLServer2. We

also write assembly level programs and theoretically determine the number

of FLOPStotal and Instotal for them. We run the assembly programs on both

experimental servers and record all the metric counts using Likwid and Linux

Perf. The product of CPU and memory utilization with execution time and

DERAPL using DE-Meter is deterministic and reproducible. We observe that

FLOPStotal and Instotal obtained experimentally are equal to the theoretically

calculated values. Hence, they are deterministic as well. However, we ob-

serve a difference in counts for Maccesses and Cmisses by using both tools. The

maximum observed difference in counts is as high as 80% for Maccesses and

75% for Cmisses.

209

F.2. EXPERIMENTS AND ANALYSIS

We then study the additivity of all the metrics except Maccesses and Cmisses

(since they fail the first stage of consistency test).

We take the same application set used to study the additivity of PMCs

(consisting of 60 and 40 compound applications composed from the base ap-

plications on both servers). The additivity test reveals that the metrics are

highly additive (with errors less than 4%) for all the applications. We refer

to the high-level metrics that pass both stages of consistency test as prime

HLMs.

To summarize, prime HLMs can be employed as model variables in any

platform-level linear energy predictive model. They include the following

five parameters: 1). average CPU utilization×Time, 2). average memory

utilization×Time, 3). FLOPStotal, 4). Instotal, and 5). DERAPL.

F.2 Experiments and Analysis

The energy predictive models are build using three popular techniques: 1).

Linear Regression (LR), 2). Random Forest (RF), and 3). Neural Networks

(NN). These techniques are explained in section 5.3.4. The rest of this section

is divided into the following three groups:

1. Group 1: We first study the accuracy of application-specific energy

predictive models on HCLServer1 and HCLServer2 using pure utilization

parameters, PMCs, and prime HLMs.

2. Group 2: We then study the platform-level energy predictive models on

HCLServer1 and HCLServer2 using pure utilization parameters, PMCs,

and prime HLMs. We divide the experiments in this section into two

classes, class A and class B. In class A, we explore the prediction accu-

racies of LR, RF, and NN based models for a limited set of applications

(DGEMM and FFT). In class B, we analyze models that employ data-sets

from a variety of applications with a vast range of problem sizes.

3. Group 3: Finally, we study the prediction accuracies of PMC and HLM

based models for workload-parallel applications on HCLServer1 (a mul-

210

F.2. EXPERIMENTS AND ANALYSIS

ticore and dual-socket server). We analyze the prediction accuracies for

models employing platform-wide and socket-wide parameters.

F.2.1 Group 1: Accuracy of Application-Specific Energy

Predictive Models Using Pure Utilization Parameters,

PMCs, and HLMs

We select two highly optimized scientific applications: 2-dimensional

Fast Fourier Transform (FFT) and Dense Matrix-Multiplication application

(DGEMM), from Intel Math Kernel Library (MKL).

We first outline a summary of the experimental steps in this section as

below:

• We build two data-sets to study the additivity of raw PMCs for FFT and

DGEMM containing the compound and base applications. Using the

additivity test errors, we select the most additive PMCs that are common

for both applications.

• We build a vast data-set containing dynamic energy consumptions, ad-

ditive PMCs and the HLMs to build energy predictive models.

• We employ the utilization parameters, highly additive PMCs and prime

HLMs in LR, RF, and NN techniques as predictor variables.

• Finally, we analyze the prediction accuracy for all models.

Procedure to Select Model Variables Using Consistency Test on

HCLServer1 and HCLServer2

We now summarize the methodology to select the PMCs and HLMs to be

employed in the models in the following steps:

• We build a dataset of 50 base applications using different problem sizes

for DGEMM and FFT to apply the additivity test. The range of problem

sizes for DGEMM is 6500×6500 to 20000×20000, and for FFT is 22400×

211

F.2. EXPERIMENTS AND ANALYSIS

22400 to 29000 × 29000. We select this range because of reasonable

execution time (> 3 seconds) of the applications on our platforms.

• For each application in a dataset, we measure the following: PMCs,

HLMs, dynamic energy consumption, and the execution time. We also

build a dataset of 30 compound applications from the serial execution of

base applications. The additivity test based on the two datasets reveals

that several PMCs are highly additive and are common for both applica-

tions. All the HLMs for both applications are highly additive and energy

correlated with errors less than 0.5%.

• From the additivity test results on HCLServer1 and HCLServer2,

we select PMCs that are commonly additive with additivity test er-

rors of less than 0.5%. In total there are nine PMCs for both

servers with an error equal to 0.5%. The PMCs are repre-

sented as set S01A = {A1, A2, A3, A4, A5, A6, A7, A8, A9} and set

S02B = {B1, B2, B3, B4, B5, B6, B7, B8, B9} for HCLServer1 and

HCLServer2, respectively.

• We calculate the correlation for all PMCs in S01A and S02B with dy-

namic energy consumption. The PMCs and their correlation factor with

dynamic energy consumption are given in Table F.1.

• We also build two subsets with four most energy correlated PMCs from

S01A and S01B and label them as S01A-Corr and S02B-Corr. S01A-

Corr and S02B-Corr consist up of A1, A5, A8, A9 and B1, B2, B4, B8,

respectively.

Energy Predictive Models for DGEMM and FFT

On both experimental platforms (Table 3.1), we build a dataset containing dy-

namic energy consumption, execution time, PMCs (Table F.1) and HLMs rep-

resenting DGEMM and FFT for a range of problem sizes. We measure the dy-

namic energy consumption using HCLWattsUP API. The PMCs are collected

using Likwid tool for each application, whereas, the HLMs are collected using

212

F.2. EXPERIMENTS AND ANALYSIS

Table F.1: Selected additive PMCs and their correlations with dynamic energy
consumption on, (a). HCLServer1 and (b). HCLServer2. 0 to 1 represents
correlation factors of 0% to 100%, respectively.

HCLServer1 PMCs Correlation
A1 IDQ_MITE_UOPS 0.993
A2 CPU_CLOCK_UNHALTED_REF_XCLK 0.801
A3 OFFCORE_REQUESTS_ALL_DATA_RD 0.921
A4 L2_RQSTS_ALL_DEMAND_DATA_RD 0.502
A5 UOPS_ISSUED_TOTAL_CYCLES 0.962
A6 UOPS_EXECUTED_PORT_PORT_0 0.932
A7 UOPS_RETIRED_CORE_TOTAL_CYCLES 0.917
A8 L2_RQSTS_MISS 0.990
A9 UOPS_EXECUTED_PORT_PORT_6 0.992

(a)

HCLServer2 PMCs Correlation
B1 UOPS_RETIRED_CYCLES_GE_4_UOPS_EXEC 0.992
B2 FP_ARITH_INST_RETIRED_DOUBLE 0.993
B3 MEM_INST_RETIRED_ALL_STORES 0.870
B4 UOPS_EXECUTED_CORE 0.993
B5 UOPS_DISPATCHED_PORT_PORT_4 0.870
B6 IDQ_DSB_CYCLES_6_UOPS 0.981
B7 IDQ_ALL_DSB_CYCLES_5_UOPS 0.972
B8 IDQ_ALL_CYCLES_6_UOPS 0.993
B9 MEM_LOAD_RETIRED_L3_MISS -0.112

(b)

213

F.2. EXPERIMENTS AND ANALYSIS

Linux Perf, Likwid, and Linux ps tool. The number of data points in the data-

set and range of problem sizes for both applications is given in Table F.2. The

dataset is also split into two subsets for training and testing the models.

Table F.2: Data-set for application specific models on HCLServer1 and
HCLServer2

HCLServer1
Application Range of Problem Sizes Step Size Total Data Points Training Set Testing Set
DGEMM 12000× 12000 to 24736× 24736 64 200 150 50
FFT 40000× 40000 to 44992× 44992 64 79 59 20

HCLServer2
DGEMM 6400× 6400 to 38400× 38400 64 401 300 101
FFT 22400× 22400 to 41536× 41536 64 300 225 75

We build models for MKL-FFT and MKL-DGEMM using LR, RF, and NN

techniques employing the predictor variables form the training sets given in

Table F.2 for HCLServer1 and HCLServer2. The models are evaluated using

the test dataset. These models are divided into four categories as given below:

1. Category A: Energy Predictive models for FFT executing on HCLServer1

using LR, RF, and NN.

• LRM-S01-UxT-FFT, RFM-S01-UxT-FFT, and NNM-S01-UxT-FFT

use pure CPU and memory utilization as predictor variables.

• LRM-S01A-FFT, RFM-S01A-FFT, and NNM-S01A-FFT use a

highly additive PMC set (S01A) as predictor variables.

• LRM-S01A-Corr-FFT, RFM-S01A-Corr-FFT, and NNM-S01A-Corr-

FFT use the top four high positively correlated PMCs (S01A-Corr)

as predictor variables.

• LRM-S01-FFT-HLM, RFM-S01-FFT-HLM, and NNM-S01-FFT-HLM

use prime HLMs as predictor variables.

2. Category B: Energy Predictive models for DGEMM executing on

HCLServer1 using LR, RF, and NN.

• LRM-S01-UxT-DGEMM, RFM-S01-UxT-DGEMM, and NNM-S01-

UxT-DGEMM use pure CPU and memory utilization as predictor

variables.

214

F.2. EXPERIMENTS AND ANALYSIS

• LRM-S01A-DGEMM, RFM-S01A-DGEMM, and NNM-S01A-

DGEMM use highly additive PMC set (S01A) as predictor

variables.

• LRM-S01A-Corr-DGEMM, RFM-S01A-Corr-DGEMM, and NNM-

S01A-Corr-DGEMM use top four high positively correlated PMCs

(S01A-Corr) as predictor variables.

• LRM-S01-DGEMM-HLM, RFM-S01-DGEMM-HLM, and NNM-S01-

DGEMM-HLM use prime HLMs as predictor variables.

3. Category C: Energy Predictive models for FFT executing on HCLServer2

using LR, RF, and NN.

• LRM-S02-UxT-FFT, RFM-S02-UxT-FFT, and NNM-S02-UxT-FFT

use pure CPU and memory utilization as predictor variables.

• LRM-S02B-FFT, RFM-S02B-FFT, and NNM-S02B-FFT use a

highly additive PMC set (S01A) as predictor variables.

• LRM-S02B-Corr-FFT, RFM-S02B-Corr-FFT, and NNM-S02B-Corr-

FFT use top four high positively correlated PMCs (S01A-Corr) as

predictor variables.

• LRM-S02-FFT-HLM, RFM-S02-FFT-HLM, and NNM-S02-FFT-HLM

use prime HLMs as predictor variables.

4. Category D: Energy Predictive models for DGEMM executing on

HCLServer2 using LR, RF, and NN.

• LRM-S02-UxT-DGEMM, RFM-S02-UxT-DGEMM, and NNM-S02-

UxT-DGEMM use pure CPU and memory utilization as predictor

variables.

• LRM-S02B-DGEMM, RFM-S02B-DGEMM, and NNM-S02B-

DGEMM use highly additive PMC set (S01A) as predictor

variables.

215

F.2. EXPERIMENTS AND ANALYSIS

• LRM-S02B-Corr-DGEMM, RFM-S02B-Corr-DGEMM, and NNM-

S02B-Corr-DGEMM use top four high positively correlated PMCs

(S01A-Corr) as predictor variables.

• LRM-S02-DGEMM-HLM, RFM-S02-DGEMM-HLM, and NNM-S02-

DGEMM-HLM use prime HLMs as predictor variables.

Table F.3, F.4, F.5, and F.6 shows the minimum, average, and maximum

percentage prediction errors for the models in category A, B, C, and D, re-

spectively.

NNM-S01-FFT-HLM, RFM-S01-DGEMM-HLM, RFM-S02-FFT-HLM, and

RFM-S02-DGEMM-HLM result in minimum average prediction errors of 5.1%,

6.9%, 1.1%, and 2.8% for models in category A, B, C, and D, respectively.

Table F.3: Prediction Accuracies for Application-Specific Models in Category A

Model Predictor variables Prediction Errors
(%) [min, avg,
max]

LRM-S01-UxT-FFT (CPU,Memory) Util × Time (2.72, 35.23, 89.41)
RFM-S01-UxT-FFT (CPU,Memory) Util × Time (2.12, 23.31, 50.25)
NNM-S01-UxT-FFT (CPU,Memory) Util × Time (1.92, 15.41, 32.12)
LRM-S01A-FFT S01A (1.71, 16.22, 44.91)
RFM-S01A-FFT S01A (0.02, 13.21, 45.85)
NNM-S01A-FFT S01A (0.01, 9.71, 32.20)
LRM-S01A-Corr-FFT S01A-Corr (2.15, 14.23, 42.15)
RFM-S01A-Corr-FFT S01A-Corr (0.25, 9.52, 28.25)
NNM-S01A-Corr-FFT S01A-Corr (0.02, 8.01, 30.10)
LRM-S01-FFT-HLM HLMs (1.95, 9.22, 33.95)
RFM-S01-FFT-HLM HLMs (0.013, 6.17, 25)
NNM-S01-FFT-HLM HLMs (0.05, 5.17, 25.00)

Discussions

Following are the salient observations from the results:

• The models employing only utilization parameters provide poor predic-

tion accuracy for all model categories. The average prediction accuracy

216

F.2. EXPERIMENTS AND ANALYSIS

Table F.4: Prediction Accuracies for Application-Specific Models in Category B

Model Predictor variables Prediction Errors
(%) [min, avg,
max]

LRM-S01-UxT-DGEMM (CPU,Memory) Util × Time (2.21, 37.71, 53.23)
RFM-S01-UxT-DGEMM (CPU,Memory) Util × Time (1.33, 21.20, 46.12)
NNM-S01-UxT-DGEMM (CPU,Memory) Util × Time (1.66, 23.40, 41.31)
LRM-S01A-DGEMM S01A (1.21, 20.11, 89.01)
RFM-S01A-DGEMM S01A (0.22, 9.12, 42.10)
NNM-S01A-DGEMM S01A (0.11, 15.42, 71.01)
LRM-S01A-Corr-DGEMM S01A-Corr (0.01, 15.21, 82.27)
RFM-S01A-Corr-DGEMM S01A-Corr (0.12, 8.92, 45.14)
NNM-S01A-Corr-DGEMM S01A-Corr (0.01, 13.07, 72.25)
LRM-S01-DGEMM-HLM HLMs (0.18, 10.98, 51.77)
RFM-S01-DGEMM-HLM HLMs (0.08, 6.92, 34.13)
NNM-S01-DGEMM-HLM HLMs (0.13, 11.07, 52.55)

Table F.5: Prediction Accuracies for Application-Specific Models in Category C

Model Predictor variables Prediction Errors (%)
[min, avg, max]

LRM-S02-UxT-FFT (CPU,Memory) Util × Time (0.92, 50.21, 88.16)
RFM-S02-UxT-FFT (CPU,Memory) Util × Time (1.20, 9.23, 32.54)
NNM-S02-UxT-FFT (CPU,Memory) Util × Time (0.43, 19.74, 61.23)
LRM-S02B-FFT S02B (0.447, 36.31, 182.2)
RFM-S02B-FFT S02B (0.069, 4.97, 42.81)
NNM-S02B-FFT S02B (0.077, 9.328, 73.85)
LRM-S02B-Corr-FFT S02B-Corr (0.042, 25.12, 190.15)
RFM-S02B-Corr-FFT S02B-Corr (0.002, 2.02, 37.21)
NNM-S02B-Corr-FFT S02B-Corr (0.024, 6.012, 67.15)
LRM-S02-FFT-HLM HLMs (0.03, 19.07, 123,2)
RFM-S02-FFT-HLM HLMs (0.22, 1.16, 16.6)
NNM-S02-FFT-HLM HLMs (0.003, 3.47, 64.64)

217

F.2. EXPERIMENTS AND ANALYSIS

Table F.6: Prediction Accuracies for Application-Specific Models in Category D

Model Predictor variables Prediction Errors (%)
[min, avg, max]

LRM-S02-UxT-DGEMM (CPU,Memory) Util × Time (2.12, 31.33, 53.02)
RFM-S02-UxT-DGEMM (CPU,Memory) Util × Time (0.12, 8.13, 23.23)
NNM-S02-UxT-DGEMM (CPU,Memory) Util × Time (1.31, 21.32, 102.32)
LRM-S02B-DGEMM S02B (0.094, 22.62, 125.48)
RFM-S02B-DGEMM S02B (0.008, 4.89, 63.55)
NNM-S02B-DGEMM S02B (0.007, 11.25, 131.23)
LRM-S02B-Corr-DGEMM S02B-Corr (0.004, 16.12, 87.25)
RFM-S02B-Corr-DGEMM S02B-Corr (0.012, 3.12, 50.12)
NNM-S02B-Corr-DGEMM S02B-Corr (0.014, 10.22, 130.21)
LRM-S02-DGEMM-HLM HLMs (0.45, 9.40, 63.72)
RFM-S02-DGEMM-HLM HLMs (0.09, 2.82, 63.34)
NNM-S02-DGEMM-HLM HLMs (0.05, 5.41, 124.57)

for RF and NN based models are comparatively better than LR based

models for DGEMM and FFT applications executing on HCLServer1 and

HCLServer2.

• The average prediction accuracy for models employing additive PMCs

(S01A and S01B) is better as compared to models using only pure

utilization parameters as predictor variables. The accuracy further im-

proves for the models employing the top four most positively correlated

PMCs (S01A-Corr and S02B-Corr). We find that the models using highly

additive and the most positively correlated PMCs yield better prediction

accuracy for application-specific models. In our previous work [146], we

also show that the correlation if applied to non-additive PMCs does not

improve prediction accuracy. We find that the models employing less

than four PMCs for DGEMM and FFT does not improve the prediction

accuracy. Therefore, to build an accurate energy predictive model, one

must employ at least four PMCs.

• We also build models using more than four PMCs as model variables.

We find that the average prediction accuracy for models using five or six

most additive and positively correlated PMCs can be better than the one

218

F.2. EXPERIMENTS AND ANALYSIS

employing four PMCs. But, since the modern computing platforms only

support 3-4 hardware registers for storing PMCs, a five or six parameters

model can not be employed for online energy predictions.

• The best prediction accuracy has been achieved for models that employ

prime HLMs as predictor variables. This is because all prime HLMs are

1). highly additive, 2). positively correlated, and 3). they represent the

complete energy-consuming activities for the applications’ execution on

our platforms.

F.2.2 Group 2: Improving the Accuracy of Platform-Level

Energy Predictive Models

In this section, we study the accuracy of platform-level energy predictive mod-

els for a set of applications (Table 3.2). We divide our experiments into two

classes:

1. Class A: We study the improvements in the prediction accuracy of en-

ergy predictive models using HLMs when compared with utilization and

prime PMC based models for a limited set of applications (i.e., DGEMM

and FFT).

2. Class B: We analyze the prediction accuracy of energy predictive models

employing pure utilization parameters and prime HLMs for a dataset ob-

tained using a variety of applications executing a vast range of problem

sizes on HCLServer1 and HCLServer2.

Class A: Analysis of Prediction Accuracies of Energy Predicted Models

for a Limited Set of Applications

The experiments in this class are run on HCLServer1 and HCLServer2 (Ta-

ble 3.1). Since, we choose commonly additive PMCs and HLMs for MKL-

DGEMM and MKL-FFT for experiments on application-specific models (Sec-

tion F.2.1), we combine the dataset for both applications. We build the following

two sets of models using the extended dataset:

219

F.2. EXPERIMENTS AND ANALYSIS

• Set A: LRM-MMFT-S01-UxT, RFM-MMFT-S01-UxT, NNM-MMFT-S01-

UxT, LRM-MMFT-S01A, RFM-MMFT-S01A, NNM-MMFT-S01A, LRM-

MMFT-S01A-Corr, RFM-MMFT-S01A-Corr, NNM-MMFT-S01A-Corr,

LRM-MMFT-S01-HLM, RFM-MMFT-S01-HLM, NNM-MMFT-S01-HLM

are the models employing pure CPU and memory utilization, additive

PMCs (S01A and S01A-Corr) or prime HLMs on HCLServer1 using LR,

RF, and NN, respectively.

• Set B: LRM-MMFT-S02-UxT, RFM-MMFT-S02-UxT, NNM-MMFT-S02-

UxT, LRM-MMFT-S02B, RFM-MMFT-S02B, NNM-MMFT-S02B, LRM-

MMFT-S02B-Corr, RFM-MMFT-S02B-Corr, NNM-MMFT-S02B-Corr,

LRM-MMFT-S02-HLM, RFM-MMFT-S02-HLM, NNM-MMFT-S02-HLM

are the models employing pure CPU and memory utilization, additive

PMCs (S02B and S02B-Corr) or prime HLMs on HCLServer2 using LR,

RF, and NN, respectively.

The training and testing sets for the models on HCLServer1 and

HCLServer2 are 153 and 66, and, 490 and 211, respectively. Table F.7 shows

the minimum, average, and maximum percentage prediction errors for the

models built-in class A.

Following are the salient observations from the results:

• RFM-MMFT-S01-HLM and NNM-MMFT-S02-HLM result in minimum

average prediction errors of 4.6% and 7.2% for HCLServer1 and

HCLServer2, respectively. We discover that for a small set of applica-

tions, the RF and NN based models can lead to better prediction accu-

racy.

• Each model parameter represents the energy-consuming activity for an

application run on a platform. Based on the nature of the application, the

impact of a model parameter may change towards their contribution to

the overall energy consumption. We find the overall average prediction

accuracy for an application-specific model is better than the models with

the combined dataset for two applications.

220

F.2. EXPERIMENTS AND ANALYSIS

Table F.7: Prediction Accuracies for Energy Predictive Models in set A and set
B.

Model Predictor variables Prediction Errors (%) [min,
avg, max]

Set A Models
LRM-MMFT-S01-UxT (CPU,Memory) Util × Time (2.32, 22.39, 121.31)
RFM-MMFT-S01-UxT (CPU,Memory) Util × Time (0.42, 12.35, 82.12)
NNM-MMFT-S01-UxT (CPU,Memory) Util × Time (0.49, 19.82, 81.31)
LRM-MMFT-S01A S01A (0.014, 18.62, 125.48)
RFM-MMFT-S01A S01A (0.028, 9.89, 63.55)
NNM-MMFT-S01A S01A (0.041, 12.25, 131.23)
LRM-MMFT-S01A-Corr S01A-Corr (0.014, 16.12, 87.25)
RFM-MMFT-S01A-Corr S01A-Corr (0.042, 6.12, 50.12)
NNM-MMFT-S01A-Corr S01A-Corr (0.090, 10.22, 130.21)
LRM-MMFT-S01-HLM HLMs (0.25, 10.40, 63.72)
RFM-MMFT-S01-HLM HLMs (0.39, 4.62, 69.54)
NNM-MMFT-S01-HLM HLMs (0.01, 6.41, 124.57)

Set B Models
LRM-MMFT-S02-UxT (CPU,Memory) Util × Time (1.23, 39.21, 132.23)
RFM-MMFT-S02-UxT (CPU,Memory) Util × Time (1.05, 35.41, 160.21)
NNM-MMFT-S02-UxT (CPU,Memory) Util × Time (0.89, 20.16, 150.94)
LRM-MMFT-S02B S02B (0.005, 35.32, 225.5)
RFM-MMFT-S02B S02B (.0001, 29.39, 157.4)
NNM-MMFT-S02B S02B (0.001, 15.43, 104.2)
LRM-MMFT-S02B-Corr S02B-Corr (0.024, 25.12, 87.25)
RFM-MMFT-S02B-Corr S02B-Corr (0.005, 22.73, 207.7)
NNM-MMFT-S02B-Corr S02B-Corr (0.003, 11.46, 152.2)
LRM-MMFT-S02-HLM HLMs (0.20, 17.27, 112.90)
RFM-MMFT-S02-HLM HLMs (0.01, 16.32, 115.34)
NNM-MMFT-S02-HLM HLMs (0.03, 7.21, 144.57)

221

F.2. EXPERIMENTS AND ANALYSIS

• The prediction accuracy of additive PMC-based models is better than the

ones using only utilization parameters and predictor variables. The av-

erage prediction errors of the PMC-based models employing most posi-

tively energy correlated PMCs (S01A-Corr and S02B-Corr) significantly

drop when compared with models using all additive PMCs (S01A and

S02B).

Class B: Analysis of Prediction Accuracies of Energy Predictive Models

for a Broad Set of Applications Employing Pure Utilization Parameters

and HLMs

We build a dataset of 586 points and 1008 points on HCLServer1 and

HCLServer2 using the applications in our testsuite (Table 3.2). The input pa-

rameters for the applications used to build the dataset are as follows:

• MKL FFT: Problem Size = 40000×40000 to 44992×44992 on

HCLServer1 and 22400×22400 to 41536×41536 on HCLServer2 with

step size of 64, verbosity = 0, Iteration = 1.

• MKL DGEMM: Problem Size = 12000×12000 to 24736×24736 for

HCLServer1 and 6400×6400 to 38400×38400 on HCLServer2 with

step size of 64, verbosity = 0, Iteration = 1.

• Intel HPCG: Problem Size = 40×40×40 to 240×240×240 with step size

of 8, Iterations = 1, Threads = 48 (HCLServer1) and 44 (HCLServer2).

• NAS OMP 3D FT: Problem Size = 256×256×128, Iterations 95 to 395

with step size of 5, Threads 48 (HCLServer1) and 44 (HCLServer2).

• NAS OMP 3D LU: Problem Size = 70×70×70 to 139×139×139 with

step size of 1, Iterations = 250, Threads = 48 (HCLServer1) and 44

(HCLServer2).

• NAS OMP 3D SP: Problem Size = 84×84×84 to 139×139×139 with

step size of 1, Iterations = 100, dt = 0.0015000, Threads = 48

(HCLServer1) and 44 (HCLServer2).

222

F.2. EXPERIMENTS AND ANALYSIS

• NAS OMP 3D BT: Problem Size = 128×128×128 to 190×190×190

with step size of 1, Iterations = 200, dt = 0.0008000, Threads = 48

(HCLServer1) and 44 (HCLServer2).

• stress: Problem Size = 4 seconds to 45 seconds with a step size of 1.

For each application configuration, we measure the dynamic energy con-

sumption, execution time, and HLMs. 410 and 705 points have been used

to train and 176 and 303 points for testing the models on HCLServer1 and

HCLServer2, respectively.

We build six platform-level models using pure CPU and memory utiliza-

tion. These models are LRM-PL-S01-UxT, RFM-PL-S01-UxT, NNM-PL-S01-

UxT, for HCLServer1, and, LRM-PL-S02-UxT, RFM-PL-S02-UxT, NNM-PL-

S02-UxT for HCLServer2. Similarly, we build six platform-level models that use

prime HLMs. These models are LRM-PL-S01-HLM, RFM-PL-S01-HLM, and

NNM-PL-S01-HLM for HCLServer1, and, LRM-PL-S02-HLM, RFM-PL-S02-

HLM, and NNM-PL-S02-HLM for HCLServer2. Table F.8 show the prediction

accuracies for platform level models.

Table F.8: Prediction accuracies for platform level energy predictive models.

Model Predictor variables Prediction Errors (%) [min,
avg, max]

LRM-PL-S01-UxT (CPU,Memory) Util × Time (0.11, 37.35, 140.05)
RFM-PL-S01-UxT (CPU,Memory) Util × Time (0.32, 25.17, 130.85)
NNM-PL-S01-UxT (CPU,Memory) Util × Time (0.09, 21.63, 152.90)
LRM-PL-S02-UxT (CPU,Memory) Util × Time (0.37, 40.73, 197.02)
RFM-PL-S02-UxT (CPU,Memory) Util × Time (0.12, 31.68, 99.65)
NNM-PL-S02-UxT (CPU,Memory) Util × Time (0.19, 24.04, 121.65)
LRM-PL-S01-HLM HLMs (0.06, 14.36, 50.75)
RFM-PL-S01-HLM HLMs (0.058, 7.91, 55.15)
NNM-PL-S01-HLM HLMs (0.05, 7.74, 52.10)
LRM-PL-S02-HLM HLMs (.003, 20.69, 157.49)
RFM-PL-S02-HLM HLMs (0.00, 11.38, 91.23)
NNM-PL-S02-HLM HLMs (0.06, 13.54, 97.08)

Discussions

Following are the salient observations from the results:

223

F.2. EXPERIMENTS AND ANALYSIS

• The minimum average prediction errors for platform level models on

HCLServer1 and HCLServer2 are 7.7% (for NNM-PL-S01-HLM) and

11.3% (for RFM-PL-S02-HLM), respectively.

• Although the utilization parameters (average CPU and memory utiliza-

tion for the application execution on a platform) are additive and highly

correlated, their use in models do not provide a better prediction accu-

racy. This is because they do not represent all the energy-consuming

activities of processor components during the application run. How-

ever, the use of all prime HLMs (that include utilization parameters)

yields more accurate energy predictive models as they represent all the

energy-consuming activities for our application set on our platform.

F.2.3 Group 3: Energy Predictive Models for Workload Par-

allel Applications on a Dual Socket Multicore CPU

Platform

In this section, we present an experimental study to explore the techniques for

accurate and reliable energy predictive models for data or workload parallel

applications on a dual-socket (socket0 and socket1) multicore CPU platform,

i.e., HCLServer1 (Table 3.1). The models employ platform-wide (PW) and

socket-wide (SW) parameters (PMCs or HLMs) as predictor variables. We

define PW parameters as features obtained for the applications’ activity on

the whole platform. However, the SW parameters track the individual resource

utilization of the applications’ activity on individually powered components (i.e.,

sockets). The application set includes DGEMM and FFT applications from

Intel MKL. We design three sets of experiments using the following workload

configurations of applications running on both sockets: 1). same-kernel and

same-workload, 2). same-kernel and different-workload, 3). different-kernel

and different-workload. These configurations are explained below:

• Same-kernel and same-workload (SKSW): In this set of experiments, we

execute two DGEMM applications with the same problem sizes on both

sockets (one kernel on socket1 and one on socket2) in parallel. The

224

F.2. EXPERIMENTS AND ANALYSIS

range of problem sizes varies from 9728×9728 to 33792×33792, with a

constant step size of 512.

• Same-kernel and different-workload (SKDW): This set of experiments is

divided into the following two subsets:

1. We first execute DGEMM with two different ranges of workload

or problem sizes. Let us call them as range A and range B.

Range A and range B uses workload size from 10000×10000 to

15000×15000 and 15000×15000 to 20000×20000, respectively,

with a constant step size of 64. To obtain data points, we run a

workload load size from Range A on socket0 and another workload

size from range B and run on socket1 in parallel.

2. The second subset of experiments include the execution of two dif-

ferent workload sizes for FFT application on each socket in paral-

lel. The ranges selected for this application are 20000×20000 to

22500×22500 and 22500×22500 to 25000×25000, respectively,

with a constant step size of 64.

• Different-kernel and different-workload (DKDW): In this set of exper-

iments, we execute a range of problem sizes for FFT and DGEMM

on socket0 and socket1 in parallel. Problem size range for FFT vary

from 20000×20000 to 22432×22432, and for DGEMM, 10000×10000

to 12400×12400. The step size is 64 for both the ranges.

In each experimental set, we measure the following for all workload config-

urations to build a data-set:

• The dynamic energy consumption of the data-parallel applications exe-

cuting on both sockets of HCLServer1 using HCLWattsUp API.

• The execution time of each workload configuration.

• We obtain two sets of top three most additive and high positively cor-

related PMCs (A1,A8,A9) from Table F.1a by using Likwid tool. We

225

F.2. EXPERIMENTS AND ANALYSIS

label the PMC sets as 1) PW-PMCs and 2). SW-PMCs. The PW-

PMCs contain the overall activity count of the platform for the work-

load parallel applications while executing on both sockets. However,

SW-PMCs contain the activity count for individual workload sizes of the

applications while executing on each socket. We label the PW-PMCs

as P-PMC-A1,P-PMC-A8,P-PMC-A9 and SW-PMCs as S0-PMC-A1,S1-

PMC-A1,S0-PMC-A8,S1-PMC-A8,S0-PMC-A9,S1-PMC-A9.

• Finally, we collect the HLMs for all workload configurations of applica-

tions involved in our experimental sets. We label the HLM sets as 1)

PW-HLMs and 2). SW-HLMs. PW-HLMs contains the overall activity

counts and SW-HLMs contains the individual activity counts (at a socket

level) for the applications’ execution.

The datasets for all the experimental sets are divided into training and test-

ing sets. For SKSW, we used 33 and 14 points to train and test the models.

For SKDW, 58 and 29 points are used to train, and, 20 and 10 points are used

to test the DGEMM and FFT models, respectively. Finally, for DKDW, we used

30 and 10 points to train and test the energy predictive models.

For each experimental set, we build the following predictive models using

PW-PMCs, SW-PMCs, PW-HLMs, and SW-HLMs:

• Same-kernel and same-workload models: LR-SKSW-PW-PMCs, RF-

SKSW-PW-PMCs, NN-SKSW-PW-PMCs, LR-SKSW-SW-PMCs, RF-

SKSW-SW-PMCs, NN-SKSW-SW-PMCs, LR-SKSW-PW-HLMs, RF-

SKSW-PW-HLMs, NN-SKSW-PW-HLMs, LR-SKSW-SW-HLMs, RF-

SKSW-SW-HLMs, NN-SKSW-SW-HLMs.

• Same-kernel and different workload models for DGEMM (SKDWMM):

LR-SKDWMM-PW-PMCs, RF-SKDWMM-PW-PMCs, NN-SKDWMM-

PW-PMCs, LR-SKDWMM-SW-PMCs, RF-SKDWMM-SW-PMCs,

NN-SKDWMM-SW-PMCs, LR-SKDWMM-PW-HLMs, RF-SKDWMM-

PW-HLMs, NN-SKDWMM-PW-HLMs, LR-SKDWMM-SW-HLMs, RF-

SKDWMM-SW-HLMs, NN-SKDWMM-SW-HLMs.

226

F.2. EXPERIMENTS AND ANALYSIS

• Same-kernel and different workload models for FFT (SKDWFT):

LR-SKDWFT-PW-PMCs, RF-SKDWFT-PW-PMCs, NN-SKDWFT-PW-

PMCs, LR-SKDWFT-SW-PMCs, RF-SKDWFT-SW-PMCs, NN-SKDWFT-

SW-PMCs, LR-SKDWFT-PW-HLMs, RF-SKDWFT-PW-HLMs, NN-

SKDWFT-PW-HLMs, LR-SKDWFT-SW-HLMs, RF-SKDWFT-SW-HLMs,

NN-SKDWFT-SW-HLMs.

• Different-kernel and different workload models: LR-DKDW-PW-

PMCs, RF-DKDW-PW-PMCs, NN-DKDW-PW-PMCs, LR-DKDW-SW-

PMCs, RF-DKDW-SW-PMCs, NN-DKDW-SW-PMCs, LR-DKDW-PW-

HLMs, RF-DKDW-PW-HLMs, NN-DKDW-PW-HLMs, LR-DKDW-SW-

HLMs, RF-DKDW-SW-HLMs, NN-DKDW-SW-HLMs.

Table F.9: Prediction accuracies for platform-wide and socket-wide PMC-
Based models for data-parallel applications

Platform-Level PMC-Based
Models

Prediction Errors (%)
[Min, Avg, Max]

Socket-Level PMC-Based
Models

Prediction Errors (%)
[Min, Avg, Max]

LR-SKSW-PW-PMCs (0.02, 4.2, 12.13) LR-SKSW-SW-PMCs (0.38, 3.23, 10.12)
RF-SKSW-PW-PMCs (0.34, 3.9, 7.42) RF-SKSW-SW-PMCs (0.92, 3.34, 6.42)
NN-SKSW-PW-PMCs (63.23, 72.34, 80.23) NN-SKSW-SW-PMCs (0.73, 2.64, 5.13)
LR-SKDWMM-PW-PMCs (0.59, 3.5, 10.29) LR-SKDWMM-SW-PMCs (0.67, 2.98, 7.6)
RF-SKDWMM-PW-PMCs (0.01, 3, 6.8) RF-SKDWMM-SW-PMCs (0.15, 2.99, 8.41)
NN-SKDWMM-PW-PMCs (62.03, 81.95, 96.63) NN-SKDWMM-SW-PMCs (0.14, 1.2, 5.6)
LR-SKDWFT-PW-PMCs (1.18, 15.56, 31.81) LR-SKDWFT-SW-PMCs (2.64, 13.87, 24.81)
RF-SKDWFT-PW-PMCs (1.21, 16.70, 32.09) RF-SKDWFT-SW-PMCs (0.19, 13.49, 29.35)
NN-SKDWFT-PW-PMCs (46.08, 61.14, 79.42) NN-SKDWFT-SW-PMCs (0.05, 3.34, 10.86)
LR-DKDW-PW-PMCs (0.48, 7.10, 19.29) LR-DKDW-SW-PMCs (2.44, 6.61, 13.5)
RF-DKDW-PW-PMCs (0.12, 8.37, 19.13) RF-DKDW-SW-PMCs (0.13, 5.55, 15.52)
NN-DKDW-PW-PMCs (35.48, 82.26, 126.23) NN-DKDW-SW-PMCs (0.01, 2.75, 5.73)

Table F.9 and F.10 show the prediction accuracy of energy predictive mod-

els for workload parallel applications using PMCs and HLMs, respectively.

Discussions

Following are the salient observations from the results:

• The average prediction accuracies for PMC and HLM based models em-

ploying SW parameters are significantly better than the ones employing

227

F.2. EXPERIMENTS AND ANALYSIS

Table F.10: Prediction accuracies for platform-level and socket-wide HLM-
Based models for data-parallel applications

Platform-Level HLM-Based
Models

Prediction Errors (%)
[Min, Avg, Max]

Socket-Level HLM-Based
Models

Prediction Errors (%)
[Min, Avg, Max]

LR-SKSW-PW-HLMs (0.39, 2.31, 8.34) LR-SKSW-SW-HLMs (0.02, 1.72, 4.52)
RF-SKSW-PW-HLMs (0.22, 2.77, 8.12) RF-SKSW-SW-HLMs (0.02, 1.10, 5.26)
NN-SKSW-PW-HLMs (0.31, 3.21, 7.21) NN-SKSW-SW-HLMs (0.02, 1.12, 4.95)
LR-SKDWMM-PW-HLMs (0.15, 2.86, 6.54) LR-SKDWMM-SW-HLMs (0.11, 2.49, 5.72)
RF-SKDWMM-PW-HLMs (0.07, 2.50, 7.47) RF-SKDWMM-SW-HLMs (0.10, 2.45, 7.06)
NN-SKDWMM-PW-HLMs (0.06, 1.88, 6.80) NN-SKDWMM-SW-HLMs (0.06, 1.16, 3.28)
LR-SKDWFT-PW-HLMs (3.24, 13.89, 21.28) LR-SKDWFT-SW-HLMs (3.83, 9.63, 12.24)
RF-SKDWFT-PW-HLMs (0.32, 12.31, 31.49) RF-SKDWFT-SW-HLMs (1.97, 8.29, 17.48)
NN-SKDWFT-PW-HLMs (0.79, 8.79, 28.73) NN-SKDWFT-SW-HLMs (0.05, 3.34, 10.86)
LR-DKDW-PW-HLMs (0.67, 5.02, 7.99) LR-DKDW-SW-HLMs (0.04, 3.05, 7.34)
RF-DKDW-PW-HLMs (0.26, 6.48, 16.64) RF-DKDW-SW-HLMs (0.63, 5.24, 12.48)
NN-DKDW-PW-HLMs (0.29, 3.15, 10.41) NN-DKDW-SW-HLMs (0.001, 2.09, 6.25)

PW parameters. The sockets are independent power-consuming com-

ponents of a processor and a parallel application running on two sock-

ets consumes the computing resources differently. To explain better, a

DGEMM or FFT application solving a small workload size may finish ear-

lier on one socket than the one solving a comparatively larger workload

size on the other socket. Therefore, the resource consumption becomes

asymmetric. We conclude that using socket-wide parameters in an en-

ergy predictive model is better equipped to capture the contributions of

individually powered computing components (for example, sockets) em-

ployed in the execution of an application. As a result, the models yield

better average prediction accuracy.

• The neural network models using platform-wide PMCs (NN-SKSW-PW-

PMCs, NN-SKDWMM-PW-PMCs, NN-SKDWFT-PW-PMCs, and NN-

DKDW-PW-PMCs) perform poorly in terms of average prediction accu-

racies. This is because of the neural network under-fits for our given

dataset. However, for the models employing socket-wide PMCs (NN-

SKSW-SW-PMCs, NN-SKDWMM-SW-PMCs, NN-SKDWFT-SW-PMCs,

and NN-DKDW-SW-PMCs), the neural network trains well and provides

the least average prediction error for all the applications in the experi-

mental sets.

• The average prediction accuracy of the models employing PW HLMs is

228

F.3. SUMMARY

almost equal or even better (for configurations such as LR-SKSW, RF-

SKSW, etc.) than the models employing SW PMC. This shows the effec-

tiveness of using HLMs that captures all the energy-consuming activities

in a processor during an application run.

• The minimum average prediction errors are obtained using SW HLMs in

an energy predictive model. This is because the SW HLMs better cap-

ture the individual energy-consuming activities of application execution

on a platform.

We, therefore, conclude that for a data-parallel application, the average

prediction accuracy of energy predictive models improve when the PMCs and

HLM representing the activity count of individually powered components (such

as sockets) are used as predictor variables.

F.3 Summary

In this chapter, we first explored the high-level metrics (HLMs) that pass the

consistency test and that represents all the energy-consuming activities dur-

ing the execution of an application on a platform. The HLMs include high-level

application parameters and on-chip sensor readings. We presented a detailed

experimental methodology to extract and select the energy monitoring coun-

ters (HLMs) on modern multicore CPU platforms.

In an experimental study, we used the pure utilization parameters, PMCs,

and HLMs to demonstrate the accuracy of application-specific energy predic-

tive models based on linear regression (LR), random forest (RF), and neural

network (NN). We showed that the use of pure CPU and memory utilization as

predictor variables in a model worsens the prediction accuracy. The accuracy

of additive PMC based models is better than pure utilization based models.

However, the results demonstrated that HLM-based models (containing high-

level application metrics and on-chip sensor readings) are the most accurate

in terms of average prediction accuracy. We showed that the HLMs better

reflect the dynamic energy-consuming activities of a processor executing an

application.

229

F.3. SUMMARY

We further presented a study demonstrating the effectiveness of HLMs

for platform-level energy predictive models using LR, RF, and NN. We demon-

strated that an HLM based model performs better than a pure utilization based

model in terms of average prediction accuracy.

Finally, we presented an experimental study to explore the effective tech-

niques for accurate and reliable energy predictive models for workload-parallel

applications executing on a dual-socket multicore CPU platform. We demon-

strated that the use of socket-level HLMs as predictor variables results in

the most accurate model; when compared with platform-level PMC-based,

platform-level HLM-based, and socket-level PMC-based models. We con-

cluded that the socket-level HLMs better reflect the contributions of individually

powered components (sockets) to the total dynamic energy consumption.

230

Appendix G

Study of Dynamic Energy

Predictive Modelling for

Data-Parallel Applications on

Dual-socket Multicore CPU

platform

In this chapter, we present an experimental study of energy predictive models

that employ platform-level PMCs and socket-level PMCs for data-parallel ap-

plications on a dual-socket multicore CPU platform. We use the dual-socket

(socket0 and socket1) HCLServer1 (Table 3.1) for our experiments. The appli-

cation set includes DGEMM and FFT applications from Intel MKL. We design

three sets of experiments described below:

• Set A: The first set of experiments includes DGEMM with two different

ranges of workload/problem sizes (say, range A and range B). Range A

and range B use workload size from 10000 × 10000 to 15000 × 15000

and 15000 × 15000 to 20000 × 20000, respectively, with a constant

step size of 64. One workload is selected from Range A and run on

socket0 and one workload is selected from range B and run on socket1

in parallel. We call this workload distribution as same kernel and different

231

workload configuration.

• Set B: The second set of experiments includes FFT application. The

ranges selected for this application are 20000 × 20000 to 22500 ×
22500 and 22500 × 22500 to 25000 × 25000, respectively, with a con-

stant step size of 64.

• Set C: The third set of experiments are run using a range of problem

sizes for FFT and DGEMM executing on socket0 and socket1 in parallel.

The range of problem sizes for FFT include 20000 × 20000 to 22432

× 22432 and for DGEMM, 10000 × 10000 to 12400 × 12400. A con-

stant step size of 64 is used for both the ranges. We call this workload

distribution as a different kernel and different workload configuration.

For each set of experiments, we measure the following for all the workload

configurations:

1. The dynamic energy consumption of the data-parallel applications exe-

cuting on both sockets of HCLServer1 using HCLWattsUp API.

2. The execution time of each workload configuration. We make sure that

for each applications’ run, the execution time is over three seconds.

3. Using Likwid tool, we collect two sets of top three most additive and

positively correlated PMCs (X1, X5, X6) from Table 4.5. We label the

PMC sets as: 1) platform-level (PW) and 2). socket-level (SW) PMCs.

The PW PMCs contain the overall count of the activity when the par-

allel application is executing on both sockets. However, SW PMCs

holds the activity count for individual workload size executing on each

socket. We label the PMCs in PW as {PWX1,PWX2,PWX3} and SW as

{S0X1,S1X1,S0X2,S1X2,S0X3,S1X3}.

The datasets for all the experimental sets are divided into training and test-

ing sets. 58, 29, and 30 data points are used to train and 20, 10, and 10 data

points are used to test the models from set A, set B, and set C, respectively.

We build two predictive models for each experimental set using PW and

SW PMCs, which are given below:

232

• Set A Models: {A-PW, A-SW}.

• Set B Models: {B-PW, B-SW}.

• Set C Models: {C-PW, C-SW}.

Table G.1 shows the prediction accuracies of set A, set B, and set C mod-

els. For each set of models, the two socket-level models have different coeffi-

cients suggesting asymmetric use of the resources of the multicore processor.

G.0.1 Discussion

Following are the salient observations from the results:

• The minimum average prediction error of 2.98% is obtained for A-SW.

The high average prediction accuracy means that PMCs employed in

the model best represents the energy-consuming activities for DGEMM

application on our platform.

• The average prediction accuracies for models employing socket-level

PMCs are better than those for models with platform-level PMCs. This

is because a parallel application running on two sockets (that are inde-

pendent power-consuming components of a processor) consumes the

resources differently. An application executing a small workload may fin-

ish sooner on one socket than the one executing a larger workload on

the other socket. In other words, the resource consumption is asym-

metric. We conclude that using socket-level PMCs in an energy predic-

tive model captures well the individual contributions of power-consuming

components (sockets) executing an application. Hence, it improves the

average prediction accuracy of a model.

We conclude therefore that for a data-parallel application, the average pre-

diction accuracy of energy predictive models improves when the PMCs repre-

senting the activity count of individually powered components (such as sock-

ets) are used as predictor variables.

233

Table G.1: Prediction accuracies for platform-level and socket-level models for
data-parallel applications.

Platform-level
Models

Prediction Errors
(%) [Min, Avg, Max]

Socket-level
Models

Prediction Errors
(%) [Min, Avg, Max]

A-PW (0.59, 3.5, 10.29) A-SW (0.67, 2.98, 7.6)
B-PW (1.18, 15.56, 31.81) B-SW (2.64, 13.87, 24.81)
C-PW (0.48, 7.10, 19.29) C-SW (2.44, 6.61, 13.5)

234

Appendix H

Experimental Observations

Demotivating the Use of Intel

RAPL for Energy Optimization

We first explain the experimental observations that lead us to investigate if

inaccurate energy measurements using Intel RAPL can affect application-level

energy optimizations.

On HCLServer1, we conduct the experiments using the Intel MKL FFT

application. We execute the application for the problem sizes 8960×8960 to

35712×35712 with a constant step size of 128. We measure the energy con-

sumption using Intel RAPL and HCLWattsUp API. Figure H.1 shows the en-

ergy profiles. The comparison results show that the average prediction error

is 35.9%. Although the results show RAPL values to be inaccurate, we further

analyzed if the RAPL readings follow the trend as system-level measurements.

The results show that RAPL does not follow the trend for several points in the

energy profile. The bold dots in the zoomed graph of Figure H.1 shows the

instances where RAPL readings deviate from HCLWattsUp readings. These

variations are because of severe resource contention and non-uniform mem-

ory access [155].

235

Figure H.1: Dynamic energy consumption of RAPL and HCLWattsUp on
HCLServer1.

236

Acronyms

CMOS Complementary Metal-oxide-semiconductor. 46

DGEMM Double-precision General Matrix Multiplication. xviii, 5, 43, 54, 59,

60, 100, 104, 107, 180, 231

DVFS Dynamic Voltage and Frequency Scaling. 8, 9, 12, 45

FFT Fast Fourier Transform. xviii, 43, 54, 59, 60, 100, 104, 107, 231

FPGA Field Programmable Gate Array. 2, 41, 151

GPU Graphics Processing Unit. 6, 11, 14, 16, 28, 36, 37, 41, 46, 54, 66, 151

HPC High Performance Computing. 6, 15, 23, 29, 42–44, 66

ICT Information and Communication Technologies. v, 5, 148

LLC Last Level Cache. 9, 21, 40, 44, 89

NUMA Non-Uniform Memory Access. 4, 9, 21, 22, 26, 44, 52, 89, 92, 111,

112, 150

PCA Principal Component Analysis. 15

PMC Performance Monitoring Counter. xiii, 12, 16, 35–37, 91, 191

QPI Quick Path Interconnect. 21, 40, 91, 192

Xeon Phi Intel Xeon Phi. 2, 6, 11, 41, 151

237

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	High-Performance Computing Platforms & Challenges
	Evolution of Performance Modelling for HPC Platforms: A Bird's-Eye View

	Motivation of This Research
	Energy: A Recent & Big Challenging Area
	Challenges in State-of-the-art Energy Efficiency Approaches in Computing
	System Level Physical Power Measurements
	On-chip Sensor Based Power Measurements
	Energy Predictive Modelling
	Summary of Challenges in Energy Measurement Approaches

	Contributions of This Research
	Thesis Structure

	Background and Related Work
	Evolution of Multicore CPU Platforms
	Terminology for Power and Energy in Computing
	Methods for Energy Consumption Measurement in Computing
	Power model in CMOS circuits
	Energy and Power Modelling Using Simulators
	System-level measurements using physical power meters
	On-chip power sensors
	Notable Energy Predictive Models on Modern Computing Platforms

	Energy Consumption Optimization Approaches in Computing
	System-level and Component-level Optimization
	Application-level Optimization

	Summary

	A Comprehensive Study on the Accuracy of State-of-the-art Energy Predictive Models on Multicore CPUs
	Experimental Setup
	Experimental platforms
	System-Level Physical Measurements Using Power Meters
	Methodology to Obtain PMCs on HCLServers

	Accuracy of Linear Energy Predictive Models and Limitations
	Class A: Accuracy of Platform-Level Linear PMC-Based Models
	Class B: Accuracy of Application-Specific PMC-Based Models

	Summary

	Energy Predictive Models for Computing: Theory, Practical Implications, and Experimental Analysis on Multicore CPUs
	Energy Predictive Models for Computing: Intuition, Motivation, and Theory
	Intuition and Motivation
	Formal Summary of Properties of Extended Model
	Strong Composability: Definition
	Mathematical Analysis of Linear Energy Predictive Models Based on The theory of Energy Predictive Models for computing
	Discussion

	Organization of Experimental Results
	Group 1: Study of Additivity of PMCs
	Additivity: Definition
	Additivity Test
	Experimental Methodology to Obtain Likwid and PAPI PMCs
	Steps to Ensure Reliable Experiments
	Class A: A Preliminary Study on the Additivity of PMCs Using Two Popular Tools
	Class B: Extended Study to Rank PMCs Using Additivity Test
	Evolution of Additivity of PMCs from Single-core to Multicore Architectures
	Discussion

	Group 2: Improving Prediction Accuracy of Platform-Level Energy Predictive Models Using Consistency Test
	Experiments and Analysis
	Discussion

	Group 3: Impact of Consistency Test on the Accuracy of Application-Specific Energy Predictive Models
	Impact of Additivity of PMCs and Correlation with Energy on the Accuracy of Energy Predictive Models
	Study to Explore Accuracy Limits for PMC-based Application-Specific Models
	Discussion

	Group 4: Study of Dynamic Energy Optimization using Intel RAPL and System-level Physical Measurements
	Summary

	A Comparative Study of Techniques for Energy Predictive Modelling using Performance Monitoring Counters on Modern Multicore CPUs
	Terminology Related to Energy, Prediction Error Measures, and Statistical Techniques
	Energy Consumption
	Prediction Error Measures
	Model Variable Selection Techniques

	Theory of Energy Predictive Models for Computing: Practical Implications
	Additivity of PMCs

	Experimental Setup
	Evaluation Platform
	Experimental Applications
	Experimental Tools
	Energy Predictive Modelling Techniques
	Selection Methods for PMCs

	Experimental Results
	Summary

	Conclusion
	Bibliography
	Appendices
	Methodology for Reliable Energy Measurements
	Rationale Behind Using Dynamic Energy Consumption Instead of Total Energy Consumption
	Application Programming Interface (API) for Measurements Using External Power Meter Interfaces (HCLWattsUp)
	Methodology to Obtain a Reliable Data Point
	Methodology to Determine the Component-Level Energy Consumption Using HCLWattsUp
	Methodology to Obtain Dynamic Energy Consumption Using Intel RAPL

	DE-METER: Calculate Dynamic Energy Consumption Using RAPL Meter
	How to Use DE-METER

	Methodology for Collection of PMCs
	List of PMC groups Provided by Likwid
	Brief overview of SLOPE-PMC and AdditivityChecker

	Methodology to Obtain Likwid and PAPI PMCs
	LIKWID pmcs
	PAPI PMCs

	Calibration of WattsUp Pro power-meters
	Employment of PMCs Selected Using Consistency Test in RF and NN
	Platform-level Models
	Application-level Models

	Employing High-Level Metrics as Model Variables in Energy Predictive Models: A Preliminary Study
	Selection Procedure for Model Variables
	Experimental Setup
	Selection of Performance Monitoring Counters (PMCs)
	Selection of High-Level Metrics (HLMs)

	Experiments and Analysis
	Group 1: Accuracy of Application-Specific Energy Predictive Models Using Pure Utilization Parameters, PMCs, and HLMs
	Group 2: Improving the Accuracy of Platform-Level Energy Predictive Models
	Group 3: Energy Predictive Models for Workload Parallel Applications on a Dual Socket Multicore CPU Platform

	Summary

	Study of Dynamic Energy Predictive Modelling for Data-Parallel Applications on Dual-socket Multicore CPU platform
	Discussion

	Experimental Observations Demotivating the Use of Intel RAPL for Energy Optimization
	Acronyms

